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A student pointed out to this to me at the end of lecture. And it is something I would like us all to
understand because it is a more simple technique than what I have taught you earlier.

When summing a geometric series all that maters is the first term and the common ratio. So, if I have a
goemetric series (infinite sum) and its first term is a and it’s common ratio is r then the sum is
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In summary, for geometric series, you do not need to worry about the indices You only need the

first term (regardless of what n equals) and the common ratio. This is different from what I lead you to

believe in class. Though what I demonsrtated is not wrong, and important for other summation formulas,
it is not the best way to find geometric sums that don’t start at n = 0.



