Worksheet 9

- 1. The vector field \vec{F} has $\|\vec{F}\| \leq 15$ everywhere and C is the circle of radius 3 centered at the origin with clockwise direction. What are the largest and smallest possible values of the line integral $\int_C \vec{F} \cdot d\vec{r}$? Give an example of corresponding vector field \vec{F} for each of the cases.
- 2. Evaluate the following line integrals. For each problem, try to come up with the most efficient strategy for computing the integral.
 - (a) The line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x,y) = x^2 \vec{i} + 4y \vec{j}$, and C is the part of the curve $y = 4/2^x$ from (0,4) to (2,1).
 - (b) The line integral $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x,y) = 3y\vec{i} 4x\vec{j}$, and C is a semicircle of radius 2 centered at the origin, from (0, -2) to (2, 0) to (0, 2).
 - (c) The line integral $\int_C \vec{F} \cdot d\vec{r}$, where

$$\vec{F}(x,y,z) = \frac{2x}{x^2 + y^2 + z^2} \, \vec{i} + \frac{2y}{x^2 + y^2 + z^2} \, \vec{j} + \frac{2z}{x^2 + y^2 + z^2} \, \vec{k},$$

and C is the upward spiral around the z-axis that begins at (1, 0, 0) and ends at (1, 0, 4), wrapping around the z-axis twice.

- 3. Let $\vec{F}(x,y) = (4-2x)\vec{i} + (12-4y)\vec{j}$. Suppose that C is a semicircular path starting at the origin in \mathbb{R}^2 . What is the maximum possible value of $\int_C \vec{F} \cdot d\vec{r}$, and what can be a corresponding path C in that case? Justify your answer.
- 4. (a) Suppose that **F** is an inverse square force field, that is,

$$\mathbf{F}(\mathbf{r}) = \frac{c\mathbf{r}}{|\mathbf{r}|^3}$$

for some constant c where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Find the work done by \mathbf{F} in moving an object from point P_1 along a path to point P_2 in terms of the distance d_1 and d_2 from these points to the origin. [Hint: What is \mathbf{F} is terms of x, y, z can you find a potential?]

- (b) An example of an inverse square field is the gravitational field $\mathbf{F} = -(mMG)\mathbf{r}/|\mathbf{r}|^3$. Use part (a) to find the work done by the gravitational field when the earth moves from aphelion (at a maximum distance of 1.52×10^8 km from the Sun) to perihelion (at a minimum distance of 1.47×10^8 km). (Use the values $m = 5.97 \times 10^{24}$ km, $M = 1.99 \times 10^{30}$ km, and $G = 10.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$.)
- (c) Another example of an inverse square field is the electric field $\mathbf{E} = \epsilon q Q \mathbf{r} / |\mathbf{r}|^3$. Suppose that an electron with a charge of -1.6×10^{-19} C is located at the origin. A positive unit charge is positioned at a distance 10^{-12} m from the electron and moves to a position half that distance from the electron. Use part (a) to find the work done by the electric field. (Use the value $\epsilon = 8.985 \times 10^{10}$.)

- 5. Let $\mathbf{F}(x,y) = \left(3\ln\left[x^2 + y^2\right] + \frac{6x^2}{x^2 + y^2}\right)\mathbf{i} + \frac{6xy}{x^2 + y^2}\mathbf{j}$
 - (a) Show that $\partial F_1/\partial y = \partial F_2/\partial x$
 - (b) Show that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is not independent of path. Does this contradict the curl test for path independence?

[Hint: Find $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ and $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ and where C_1 and C_2 both start at (1,0) and end at (-1,0) where C_1 is the upper half of the unit circle and C_2 is the lower half of the unit circle. Are these integrals equal?]

6. Use Green's Theorem to find the work done by the force $\mathbf{F}(x, y) = x(x+y)\mathbf{i} + xy^2\mathbf{j}$ in moving a particle from the origin along the *x*-axis to (1,0), then along the line segment to (0,1), and then back to the origin along the *y*-axis.