Worksheet 5

1. The tables below give values of the function f(x,y) and its partial derivatives at a variety of points. Suppose that x = -2uv and $y = u^2 - v^2$. If we think of f as a function of u and v, what are $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ at the point (u, v) = (1, -1)? How about at the point (0, 1)?

> -23 -18-11 $\overline{-2}$ 10 -19-16-11-61 -15-12-10-14-7-12-12-13-13-15-22-10-11-13-16

f(x,y):

	$y \setminus x$	-2	-1	0	1	2
$f_x(x,y)$:	2	6	7	8	10	12
	1	3	4	5	6	7
	0	1	2	2	3	3
	-1	0	0	-1	-1	-2
	-2	-1	-2	-3	-4	-6

$y \setminus x$	-2	-1	0	1	2
2	-4	-3	1	5	10
1	-4	-2	1	4	9
0	-3	-2	1	4	8
-1	-3	-1	0	3	7
-2	-2	-1	0	3	6

- 2. The temperature at a point (x,y) on a plate is T(x,y), measured in degrees Celsius. A bug crawls on the plate so that its position after t seconds is given by $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters.
 - (a) What does T(t) = T(x(t), y(t)) represent at a given time t?
 - (b) Suppose The temperature function satisfies $T_x(2,3) = 4$ and $T_y(2,3) = 3$. How fast is the temperature rising on the bugs path after 3 seconds?
 - (c) Suppose at 3 seconds the bug has had enough and stops, in what direction should the bug go for the heat to decrease the fastest.
- 3. In the Atari game Pitfall!, Pitfall Harry searches for treasure in a jungle. At certain points, Harry has to grab a vine hanging from a tree and swing over a pond full of alligators. (See the figure on the left. A more "abstract" version of the figure is shown on the right.)

The vine has length L (in feet) and swings from a point 20 feet over the pond. If t is the time in seconds from the moment Harry grabs the vine, the angle θ between the vine and the normal to the pond is given by

$$\theta(t) = \frac{\pi}{4}\cos(2t).$$

In addition, the vine is slightly elastic, and the vine stretches out at a rate of dL/dt = 1/L at any given time. When t = 0.5 seconds, L = 16. At what rate is Harry getting closer to the surface of the pond at this time?

1

4. Cartesian coordinates (x, y) can be transformed to the polar coordinates (r, θ) and vice versa, via the relations

$$x = r\cos\theta$$
, $y = r\sin\theta$, $r = \sqrt{x^2 + y^2}$, $\tan\theta = \frac{y}{x}$.

Let z = z(x, y) be a differentiable function in the domain x > 0, y > 0.

- (a) Use the chain rule to write $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- (b) Using part (a), solve for $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$.
- (c) Show that the expressions you get in part (b) are the same as you would get by using the chain rule to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ in terms of $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$.
- (d) Show that the following relation holds:

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$$

- 5. Answer the following questions about chain rules.
 - (a) Let z(t) = f(t)g(t) for differentiable functions f and g. Use the chain rule applied to h(x,y) = f(x)g(y) to show

$$\frac{dz}{dt} = f'(t)g(t) + f(t)g'(t).$$

In other words, the one-variable product rule is a special case of the two-variable chain rule.

(b) A function f(x, y) is said to be **homogeneous of degree** p if $f(tx, ty) = t^p f(x, y)$ for all t. Show that any differentiable function f(x, y) which is homogeneous of degree p satisfies Euler's equation:

$$xf_x(x,y) + yf_y(x,y) = pf(x,y).$$

(Hint: for fixed (x, y), consider g(t) = f(tx, ty) and compute g'(1)).

6. Below are contour diagrams for a function f(x,y), defined on the region R consisting of all points (x,y) such that $-3 \le x \le 3$ and $-3 \le y \le 3$. The contours of the function are circular arcs centered at (3,3); the contours shown in each picture are spaced equally. Contours at noninteger heights progress linearly between the contours at integer heights. Answer the following questions:

2

- (a) Give an underestimate and an overestimate for the value of $\int_{R} f(x,y)dA$.
- (b) Decide whether the value of $\int_R x f(x,y) dA$ is positive, negative, or zero. Justify your answer.
- (c) Let S be the subregion of R consisting of all points (x, y) such that $f(x, y) \geq 4$. Write a double integral that gives the average value of f(x, y) on S.