Worksheet 2

1. Two functions f(x, y) and g(x, y) are given below. For each of the following statements, decide whether the statement is true for each function f and g. Record your answers in the table shown below.

 $f(x,y) = xy^2$ $g(x,y) = x^2 + y + 4$

- (a) This function is defined for all values of x and y.
- (b) This function is negative for some values of x and y.
- (c) The cross-sections of the graph of this function parallel to the xz-plane are lines.
- (d) The cross-sections of the graph of this function parallel to the yz-plane are parabolas.
- (e) The contours of the graph of this function are parabolas.
- (f) The contours of the graph of this function are ellipses.
- (g) The contours of the graph of this function are hyperbolas.
- (h) The graph of this function intersects the x-axis.

	f(x,y)	g(x,y)
(a)		
(b)		
(c)		
(d)		
(e)		
(f)		
(g)		
(h)		

- 2. Write an equation for each of the following planes.
 - (a) A plane that passes through the point (24, -13, 2) and is parallel to the *xz*-plane.
 - (b) The plane z = f(x, y), where f(x, y) is a linear function with the following partial table of values:

$y \setminus x$	20	25	30	35
35		23		
30	26		14	
25				5
20			8	

(c) A plane that passes through the point (-3, 0, 2) but does not intersect the plane x - 2y + 5z = 14.

3. Two functions p(x, y) and q(x, y) are given below. For each of the following statements, decide whether the statement is true for each function f and g. Record your answers in the table shown below.

$$p(x,y) = 4x^2 + 8x + y^2$$
 $q(x,y) = \frac{1+x^2}{1+y^2}$

- (a) This function is defined for all values of x and y.
- (b) This function is negative for some values of x and y.
- (c) The cross-sections of the graph of this function parallel to the xz-plane are lines.
- (d) The cross-sections of the graph of this function parallel to the yz-plane are parabolas.
- (e) The contours of the graph of this function are parabolas.
- (f) The contours of the graph of this function are ellipses.
- (g) The contours of the graph of this function are hyperbolas.
- (h) The graph of this function intersects the x-axis.

	p(x,y)	q(x,y)
(a)		
(b)		
(c)		
(d)		
(e)		
(f)		
(g)		
(h)		

- 4. Write an equation for each of the following planes. In some cases, there may be more than one plane satisfying the given criteria.
 - (a) A plane that passes through the point (-3, 0, 2) and is perpendicular to the plane x 2y + 5z = 14.
 - (b) A plane with z-intercept 12 that contains the line x 2y = 4 in the xy-plane.
 - (c) A plane containing the triangle with vertices (1, 0, -2), (2, 2, 1), and (-1, 2, 4).
- 5. Sketch the graph of each of the following equations in \mathbb{R}^3 :

(a)
$$y = x^2 + z^2$$

(b) $z = \sqrt{x^2 + y^2}$
(c) $z = \sqrt{(x-3)^2 + y^2}$
(d) $z = \sqrt{4 - (x^2 + y^2)}$

- 6. Sketch the graph of each of the following equations in \mathbb{R}^3 :
 - (a) $z = x^2 + y^2$ (b) $16 = x^2 + z^2$ (c) $z^2 = x^2 + y^2$ (d) $z = 4 - \sqrt{x^2 + y^2}$