Worksheet 13

1. Let S be the surface consisting of the following pieces:

- The cylinder $x^2 + y^2 = 25$ from z = 2 to z = 6, oriented away from the z-axis
- The disc $x^2 + y^2 \le 25$ in the plane z = 2, oriented downward

Let $\vec{F}(x, y, z) = -2y\vec{i} + 3xz\vec{j} + 5z\vec{k}$. Answer the following questions:

- (a) Compute the flux of \vec{F} through S.
- (b) Compute the line integral of \vec{F} over the circle $x^2 + y^2 = 25$ in the plane z = 6 oriented counterclockwise when viewed from above.
- (c) How are the above two integrals related? Explain you answer. (Are they equal? Should they be equal? If not, why not?)
- 2. In each of the following problems, a closed curve C and a vector field \vec{F} are given. Evaluate $\oint_C \vec{F} \cdot d\vec{r}$.
 - (a) C is the rectangle with vertices (0,0,2), (2,0,2), (2,2,0), and (0,2,0), in that order. The vector field \vec{F} is given by $\vec{F}(x,y,z) = -4z \,\vec{i} + y^2 \,\vec{j} + 3x \,\vec{k}$.
 - (b) C is the curve obtained by intersecting the cylinder $x^2 + y^2 = 4$ with the surface $z = 9 x^2$, oriented counterclockwise when viewed from above. The vector field \vec{F} is given by $\vec{F}(x, y, z) = z \vec{i} x \vec{j} + y \vec{k}$.
- 3. In each of the following problems, a surface S and a vector field \vec{F} are given. Evaluate $\iint_{S} \vec{F} \cdot d\vec{A}$.
 - (a) $\vec{F}(x, y, z) = x^2 z^3 \vec{i} + 2xyz^3 \vec{j} + xz^4 \vec{k}$, and S is the surface of the box with vertices $(\pm 1, \pm 2, \pm 3)$.
 - (b) $\vec{F}(x, y, z) = xy \sin z \, \vec{i} + \cos(xz) \, \vec{j} + y \cos z \, \vec{k}$, and S is ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. [Hint: symmetry?]
 - (c) $\vec{F}(x, y, z) = (\cos z + xy^2)\vec{i} + xe^{-z}\vec{j} + (\sin y + x^2z)\vec{k}$ and S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4.
- 4. Let S be the part of the surface $z = x^2 + y$ that lies over the square in the xy-plane defined by the inequalities $-1 \le x \le 1$ and $0 \le y \le 2$, and let C be the boundary of S, oriented counterclockwise when viewed from above. Evaluate the circulation of the vector field $\vec{F}(x, y, z) = z \vec{i} 2x \vec{j} + y \vec{k}$ around C.

- 5. Determine whether each statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.
 - (a) If \vec{F} is a vector field, then div \vec{F} is a vector field.
 - (b) If \vec{F} is a vector field, then curl \vec{F} is a vector field.
 - (c) If S is the sphere of radius 1, centered at the origin, oriented outward, and \vec{F} is a vector field such that $\iint_S \vec{F} \cdot d\vec{A} = 0$, then div $\vec{F} = 0$ everywhere on and inside of S.
 - (d) Let \vec{F} and \vec{G} be smooth vector fields, then

$$\operatorname{curl}(\vec{F}\cdot\vec{G}) = \operatorname{curl}\vec{F}\cdot\operatorname{curl}\vec{G}$$

(e) Let \vec{F} and \vec{G} be smooth vector fields, then

$$\operatorname{curl}(\vec{F} \times \vec{G}) = (\operatorname{curl} \vec{F}) \times (\operatorname{curl} \vec{G})$$

6. In each of the below verify that Stokes' theorem is true for the given vector field \vec{F} and surface S. This of course means to compute both

$$\iint_{S} \operatorname{curl} \, \vec{F} \cdot d\vec{A} \qquad \text{and} \qquad \int_{C} \vec{F} \cdot d\vec{r}$$

and check that they are the same. For each, comment on which was easier.

- (a) $\vec{F}(x, y, z) = y^2 \vec{i} + x \vec{j} + z^2 \vec{k}$ and S is the part of the paraboloid $z = x^2/4 + y^2$ that lies below z = 1, oriented upward. [Hint: the area of an ellipse is $ab\pi$, where a and b are half the length of the major and minor axes.]
- (b) $\vec{F}(x, y, z) = e^{-x} \vec{i} + e^x \vec{j} + e^z \vec{k}$ and S is the part of the plane 2x + y + 2z = 2 in the first octant, oriented upward.