Worksheet 12

- 1. Decide whether each of the following statements is true or false. Explain your answers.
 - (a) If a vector field \vec{F} in 3-space has zero divergence, then $\vec{F} = a\vec{i} + b\vec{j} + c\vec{k}$ where a, b, c are constants.
 - (b) The flux of any constant vector field through any closed, smooth, oriented surface is zero.
 - (c) If S is an oriented surface in 3-space, and -S is the same surface, but with the opposite orientation, then

$$\int_{S} \vec{F} \cdot d\vec{A} = -\int_{-S} \vec{F} \cdot d\vec{A}.$$

- (d) If $\vec{F}(x, y, z) = -y^2 \vec{k}$, and S is the surface of the cube of edge length 2 with vertices $(\pm 1, \pm 1, \pm 1)$ oriented outward, then the only faces of \vec{F} through which the flux of \vec{F} is nonzero are the top and bottom faces
- (e) If \vec{F} is a 3-dimensional vector field such that $\vec{F} = \operatorname{grad}(f)$ for some differentiable function f, then $\operatorname{div} \vec{F} = 0$.
- 2. Consider the cylinder of radius 3 about the y-axis with $0 \le y \le 8$. Let S be the curved lateral surface of this cylinder together with the base of the cylinder that lies in the xz-plane, oriented inward. Let $\vec{F}(x, y, z) = (-2yz)\vec{i} + xz\vec{j} + y^2\vec{k}$. Compute

$$\int_{S} \operatorname{curl} \vec{F} \cdot d\vec{A}.$$

3. Let S be the paraboloid $z = x^2 + y^2 - 5$ closed off by the disk $x^2 + y^2 \le 9$ on the plane z = 4, oriented outward. Let $\vec{F}(\vec{r}) = \vec{r}$. Compute $\int_S \vec{F} \cdot d\vec{A}$.