

Spectral Estimation and Iterated Whitening

Jared McBride

Applied Mathematics University of Arizona

Jan 24, 2023

Introduction

Power spectrum: "power" or "energy" as function of frequency

Applications

- Time series analysis
- Prediction
- Data driven model reduction

Motivation

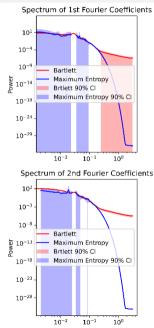
Program in Applied Mathematics

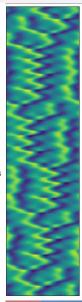
- Kuramoto-Sivishinsky (KS) equation
- spatiotemporal chaos

$$\begin{cases} u_t + uu_x + u_{xx} + u_{xxxx} = 0\\ t \in [0, \infty), \quad x \in [0, L] \end{cases}$$

$$u(x,t) = \sum_{k=-\infty}^{\infty} v_k(t)e^{ikt}$$
$$\dot{v}_k = (q_k^2 - q_k^4)v_k - \frac{iq_k}{2}\sum_{j=-\infty}^{\infty} v_j v_{k-j}$$
$$q_k = \frac{2\pi}{L}k$$

• Our work requires *accurate spectral estimates*





3/26

What is power spectrum?

Terminology and Definition

Given a discrete-time stochastic process (assume all necessary moments exist)

$$X = (\dots, X_{-2}, X_{-1}, X_0, X_1, X_2, \dots)$$

We have

$$\mu_n = \mathbb{E}X_n$$

$$C_X(n,m) = \mathbb{E}(X_n - \mu_n)(X_m - \mu_m)^*$$

X is wide-sense stationary (WSS) if

$$\mu_n = \mu$$
 (constant)
 $C_X(n,m) = C_X(n-m)$ (depends only on lag)

Assume *X* is WSS and $\mu = 0$ (WLOG)

Def. The *power spectrum* of X is

$$S_X(\omega) = \sum_{n=-\infty}^{\infty} C_X(n) e^{-i\omega n} = \mathcal{F}\{C_X\}(\omega), \qquad C_X(n) = \mathbb{E}X_n X_0^*$$

Program in Applied

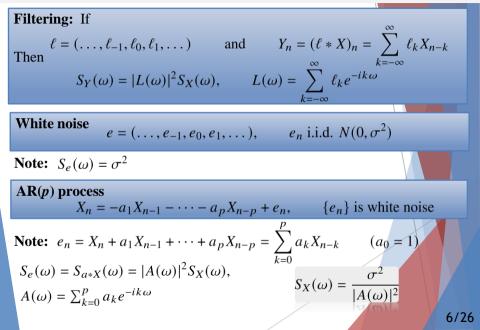
What is power spectrum?

Some intuition

Program in Applied Mathematics

Spectral representation of time series $X_n = \int_{-\pi}^{\pi} e^{in\omega} \sqrt{S_X(\omega)} \, dW_{\omega}$ By inverse Fourier $\operatorname{var}(X) = C_X(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_X(\omega) e^{i\omega 0} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_X(\omega) d\omega$ $S_X(\omega) \approx \frac{1}{N} |\hat{X}(\omega)|^2$ 5/26

Some signals and systems theory

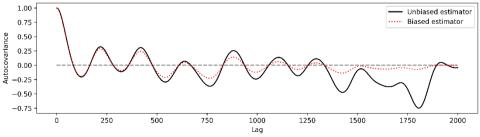


Covariance Estimation

Given $x = (x_n, n = 1, ..., N)$ (a realization of $(X_n, n = 1, ..., N)$) Unbiased Covariance Estimate:

$$R_X(n) = \mathbb{E}[(X_n - \mu)(X_0 - \mu)^*] \approx \frac{1}{N - n} \sum_{j=1}^{N - n} (x_{n+j} - \tilde{\mu})(x_j - \tilde{\mu})^*$$

Biased estimate:
$$R_X(n) \approx \frac{1}{N} \sum_{j=1}^{N - n} (x_{n+j} - \tilde{\mu})(x_j - \tilde{\mu})^* = \tilde{R}_X(n)$$

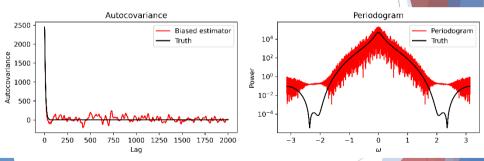


Spectrum Estimation

Windowed Periodogram

Periodogram: (direct approach)

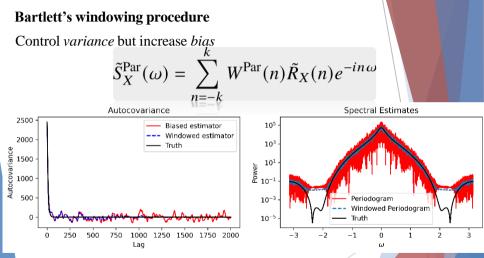
$$\tilde{S}_X^{\rm per}(\omega) = \sum_n \tilde{R}_X(n) e^{-in\omega} = \dots = \frac{1}{N} |\hat{x}(\omega)|^2 \quad (= \texttt{abs2.(fft(x))/N})$$



Periodogram: asymptotically unbiased, but inconsistent

Spectrum Estimation Bartlett

Program in Applied Mathematics



Periodogram: asymptotically unbiased, but inconsistent

Windowed Periodogram: asymptotically unbiased, and consistent

Spectrum Estimation

Maximum Entropy Spectral Analysis

Maximize "entropy"

$$E = \int_{-\pi}^{\pi} \log \tilde{S}(\omega) \ d\omega$$

Subject to:

$$\int_{-\pi}^{\pi} \tilde{S}(\omega) e^{i\omega n} \, d\omega = \tilde{R}(n) \qquad \text{for } n = 0, 1, \dots, p$$

Gives

$$\tilde{S}(\omega) = \frac{\sigma_p^2}{\left|1 + \sum_{k=1}^p a_k e^{-ik\omega}\right|^2}$$

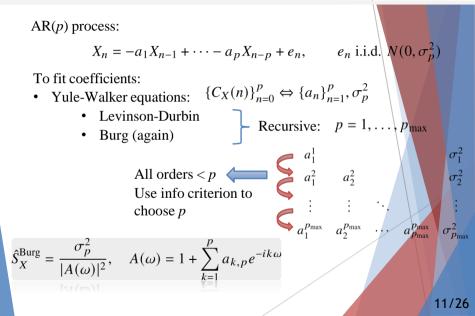
Here, $\{a_k\}_{k=1}^p$ are the autoregressive coefficients of order *p*, i.e., they minimize

$$\sum_{n=1}^{N-p} \left| x_{n+1} - \sum_{k=0}^{p-1} a_k x_{n-k} \right|^2$$

10/26

Spectrum Estimation

Maximum Entropy Spectral Analysis



Program in Applied

Spectral Factorization and modeling filters

17/26

Given $S_X(\omega) = \sum_{k=-m}^{m} C_k e^{-ik\omega}, \qquad C_{-k} = C^*$ "Spectral factorization" • Fejér-Riesz theorem • Levinson-Durbin We can write Kalman Filter for (1) $L(\omega) = \sqrt{S_X(\omega)} \approx \sum_{k=-m}^m \ell_k e^{-ik\omega}$ or (2) $L(\omega) = \sum_{k=0}^m \ell_k e^{-ik\omega}$ If *e* is white noise with unit variance and $Y = \ell * e$, then (1) $S_Y(\omega) = \left| \sum_{k=-\infty}^m \ell_k e^{-ik\omega} \right|^2 S_e(\omega)$ (2) $S_Y(\omega) = |L(\omega)|^2$ = $S_X(\omega)$ $\approx |L(\omega)|^2 \cdot 1 = S_X(\omega)$ ℓ is a modeling filter

Spectral Factorization and modeling filters

Given L, define W

$$L^{-1}(\omega) = W(\omega) \approx \sum_{k=0}^{m} w_k e^{-ik\omega}$$

Observe,

$$|W(\omega)|^2 \approx [S_X(\omega)]^{-1}$$

So,

$$S_{w*X}(\omega) = |W(\omega)|^2 S_X(\omega)$$

$$\approx S_X(\omega) / S_X(\omega) = 1$$

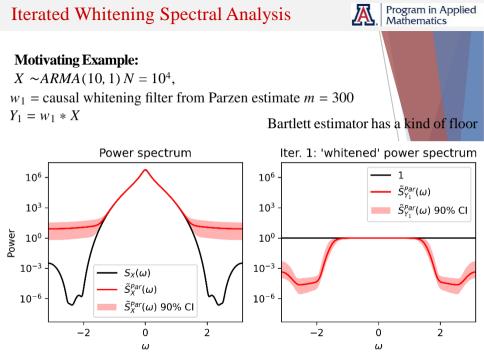
w is a whitening filter

Conveniently, given Bartlett estimate

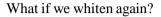
$$\tilde{S}_X^{\text{Par}}(\omega) = \sum_{n=-k}^k W^{\text{Par}}(n) \tilde{R}_X(n) e^{-in\omega}$$

can construct approximate modeling and whitening filters

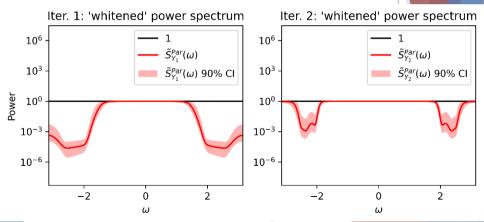
13/26



Modeling filter Spectral Analysis

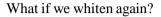


 w_2 = causal whitening filter from Parzen estimate of $S_{Y_1}(\omega)$ $Y_2 = w_2 * Y_1 = w_2 * w_1 * X$

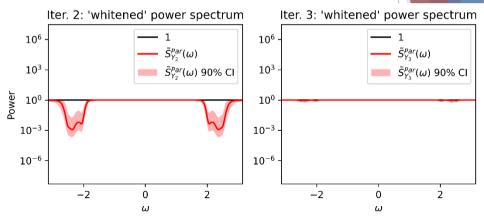


Program in Applied

Modeling filter Spectral Analysis

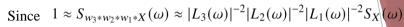


 w_3 = causal whitening filter from Parzen estimate of $S_{Y_2}(\omega)$ $Y_3 = w_3 * Y_2 = w_3 * w_2 * w_1 * X$

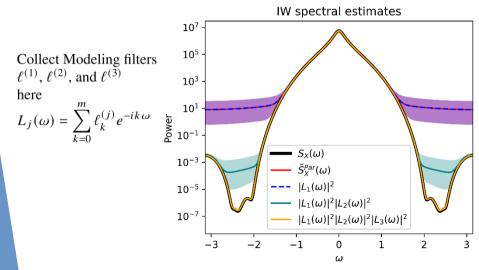


Program in Applied

Iterated Whitening Spectral Analysis

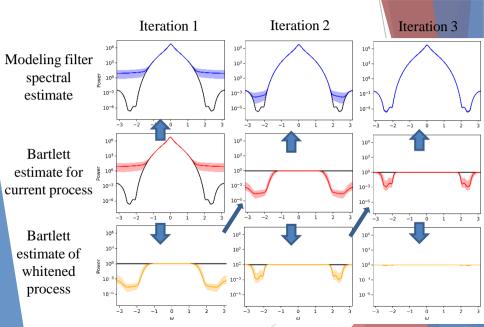


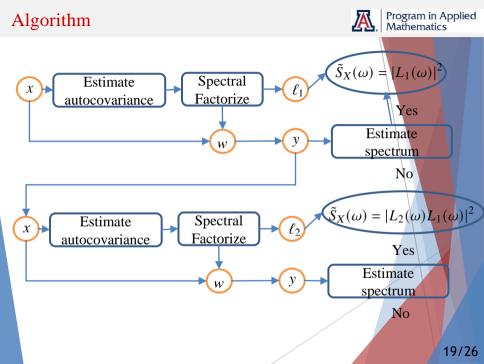
then $S_X(\omega) \approx |L_3(\omega)|^2 |L_2(\omega)|^2 |L_1(\omega)|^2 =: \tilde{S}_X^{\text{IW}}(\omega)$



Program in Applied

Algorithm





Convergence

20/26

Iterated whitening converges in finite steps

- Bartlett captures top ~6 decades
- Whitening *whitens* accurate frequency range
 ➢ New range is ~ 6 decades less
- Floor goes below 1

$$1 > \tilde{S}_X^{\text{Par}}(\omega) = |L(\omega)|^2 = |W(\omega)|^{-2} \implies |W(\omega)|^2 > 1$$
$$S_{w*X}(\omega) = |W(\omega)|^2 S_x(\omega) > S_x(\omega) \qquad Whitening$$

Whitening raises low powers

Emanuel Parzen (1957):

$$\operatorname{var}(\hat{S}_X^{\text{parz}}(\omega)) \sim \frac{151}{280} \frac{L}{N} S_X^2(\omega) \qquad (\omega \neq 0, \pm \pi)$$
$$\operatorname{bias}(\hat{S}_X^{\text{parz}}(\omega)) \sim \frac{6}{L^2} S_X''(\omega)$$

Results

Program in Applied Mathematics

Experiment

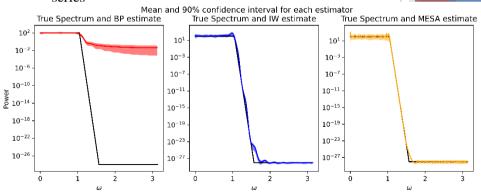
- Process know spectrum
- Large dynamic range
- N = 1000 (time series length)
- 100 independent time series

Three methods

- Bartlett-Parzen
- MESA

$$p_{\text{max}}=100$$

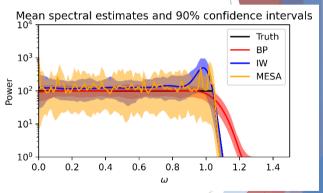
- Iterated Whitening
 - 10 iterations



Results

Program in Applied Mathematics

- Both MESA, IW approximate full dynamic range
- MESA has numerical issues at top of large spectral ranges
- Variance of IW less than MESA top of range, smoother



22/26

Results

Average of 100 sample times series			
Method	Spec. 1 high-low	Spec. 2 low-high-low	Spec. 3 low- high
Bartlett- Parzen	8.55•10 ⁻⁴ sec	7.82•10 ⁻⁴ sec	7.02•10 ⁻⁴ sec
Iterated Whitening	0.114 sec	0.114 sec	0.114 sec
MESA	0.00207 sec	0.00171 sec	0.00189 sec

Run time analysis

Program in Applied Mathematics

24/26

Bartlett: MESA:

IW:

$$O(mNd^{2}) + O(d^{2}N_{f} \log N_{f})$$

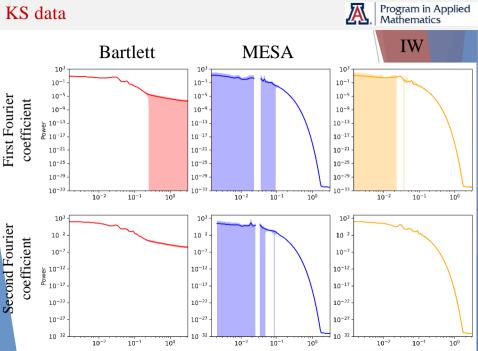
$$O(p_{\max}^{2}Nd^{2}) + O(p_{\max}Nd^{3}) + O(p_{\max}^{2}d^{3})$$

$$O(MmNd^{2}) + O(MmN_{SF}d^{3})$$

$$+ O(Md^{2}N_{f} \log N_{f}) + O(Md^{3}N_{f})$$

- *d* dimension
- *M* # of whitening iterations
- *m* lag window cutoff
- p_{max} # of Burg iterations in MESA
- *N*_{SF}
- *N_f*
- N

iterations of spectral factorization algorithm
of points in frequency grid
length of time series (in steps)



Conclusions and Future Work

Conclusion

- IW is much <u>more accurate</u> than periodogrambased estimators for spectra with <u>large</u> <u>dynamic range</u>
- IW is more robust than MESA
- (noncausal) IW is simple to implement

More...Multichan nel

- Control Variate mod-FiftedreeWorktimation
- Further analysis on convergence
- Apply estimator to model reduction
- Can iterated whitening address similar difficulties in phase estimation?

Acknowledgements

- Kevin Lin, advisor
- NSF
- RTG at Arizona

Thank You!

Reference

• J. M., Kevin K. Lin, A novel method for estimation of multiscale spectra, in preparation. 26/26