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Introduction:
Why fit an autoregressive model?

Approximate the power spectrum of processes
AR fitting
Whitening filter and LPC problem
Stepping stone to full ARMA fitting and rational approximation of
spectra
Order Selection?
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Autoregressive models of order p, AR(p) have the form

Yn + a1Yn−1 + · · · + apYn−p = 𝜇 + 𝜀n 𝜀n ∼ N (0, 𝜎2) i.i.d.

If Y = (Yn, n > −∞), 𝜀 = (𝜀n, n > −∞), a = (1, a1, a2, . . . , ap)
Then (centering Y )

(a★ Y )n = 𝜀n

It can be shown that (letting A(z) = 1 + a1z−1 + a2z−2 + · · · + apz−p)

SY (z) =
𝜎2

A(z)A∗(z−∗) =
𝜎2

(1 − z1z−1) (1 − z∗1z) · · · (1 − z−1
p ) (1 − z∗pz)

For Y to be stationary it is required that z1, . . . , zp ∈ D
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MCMC Bayesian Inference

Given a model and data
𝜃, model parameters
y, data or observation

𝜋(𝜃 |y) ∝ 𝜋(y |𝜃)𝜋(𝜃)

In our case given data y and parameters 𝜃,

y = (yn, n = 1, 2, . . . ,M), 𝜃 = (p, 𝜎2, z1, . . . , zp) = (p, v, z)

We will write
𝜋(p, v, z |y) ∝ 𝜋(y |p, v, z)𝜋(v, z |p)𝜋(p)

Maximal likelihood use optimization to find the a maximum.
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Likelihood of AR model
Observe that since 𝜀 ∼ CN (0, 𝜎2IM) is Gaussian, Ỹ = (Yn, n = 1, . . . ,M) is
also Gaussian. So, let var(Ỹ ) = 𝜎2QM Then the density of Ỹ my be written

fỸ (y) = (𝜋𝜎2
𝜀)−M |QM |−1 exp

(
−1
𝜎2
𝜀

y∗Q−1
M y

)
or rather

𝜋(y |p, v, z) = (𝜋v)−M |QM (z) |−1 exp

(
−1
v

y∗ [QM (z)]−1y
)

We are mainly concerned with the following ratios

𝜋(y |p, v, z′)
𝜋(y |p, v, z) =

|QM (z) |
|QM (z′) | exp

(
−1
v

(
y∗ [QM (z′)]−1y − y∗ [QM (z)]−1y

))
𝜋(y |p, v ′, z)
𝜋(y |p, v, z) =

( v
v ′

)M
exp

((
−1
v ′ + 1

v

)
y∗ [QM (z)]−1y

)
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A brief intro to RJMCMC
A generalization of Metropolis-Hastings,
Recall for (regular) MH a purposed move from x to x ′ is accepted with
probability

𝛼 = 1 ∧ 𝜋(x ′)q(x, x ′)
𝜋(x)q(x ′, x)

For RJMCMC we wish to include more general spaces

C =

pmax⋃
p=1

Ck where Ck = {k} × R+ × Rk

Dimension matching how to jump from Ck to Ck′ in a way will make sense and
allow for detailed balance.

g : Ck ×Ωr → Ck′ ×Ωr′

So that
k + r = k ′ + r ′

g is a diffeomorphism
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A brief intro to RJMCMC

𝛼 = 1 ∧ 𝜋(p′, v ′, z′ |y)
𝜋(p, v, z |y) · q(v, z |v ′, z′, p, p′)q(p|p′)

q(v ′, z′ |v, z, p, p′)q(p′ |p)

����𝜕 (v ′, z′)
𝜕 (v ′, z′)

����
= 1 ∧ 𝜋(y |v ′, z′, p′)𝜋(v ′, z′ |p′)𝜋(p′)

𝜋(y |v, z, p)𝜋(v, z |p)𝜋(p) · q(v, z |v ′, z′, p, p′)q(p|p′)
q(v ′, z′ |v, z, p, p′)q(p′ |p)

����𝜕 (v ′, z′)
𝜕 (v ′, z′)

����
= 1 ∧ 𝜋(y |v ′, z′, p′)

𝜋(y |v, z, p) · 𝜋(v
′, z′ |p′)𝜋(p′)

𝜋(v, z |p)𝜋(p) · q(v, z |v ′, z′, p, p′)q(p|p′)
q(v ′, z′ |v, z, p, p′)q(p′ |p)

����𝜕 (v ′, z′)
𝜕 (v ′, z′)

����
𝛼 = 1 ∧ (likelihood ratio) × (prior ratio) × (proposal ratio) × (Jacobian)
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Set up

The parameters of the AR models will be specified by
the variance of the white noise process
the poles of the transfer function

The parameter space we wish to explore is

C =

pmax⋃
p=1

Ck where Ck = {k} × R+ × Dk

This many of the modeling choices in the sequel follow those of Green in [?].
Let

X = (P,V , Z1, Z2, . . . , ZP) ∈ C
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Priors

The order P will be a Poisson distribution conditioned on P ≤ pmax

fP (p) =
𝜆pe−𝜆

p!

(pmax∑︁
j=0

𝜆je−𝜆

j!

)−1

For the variance V let u ∼ Unif( [−𝛽, 𝛽]) and

V = eu so that fV (v) =
1

2𝛽v
1[−𝛽,𝛽 ] (log(v))

The p poles are independent and chosen randomly (uniformly) over D,

fZj (zj) =
1
𝜋

1D(zj) for j = 1, . . . , p
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Moves

There are three move types:
Change in variance, with probability 𝛽p (p is the number of poles)
Change in pole position, with probability 𝜋p

Birth or death of pole, with probabilities bp, and dp, respectively.
More precisely, a move from
▶ mathcalCp to mathcalCp+1 occurs with probability bp
▶ mathcalCp+1 to mathcalCp occurs with probability dp

The probabilities observe the following
𝛽p + 𝜋p + bp + dp = 1 for all p
d0 = 𝜋0 = bpmax = 0
bp = c min{1, fP (p + 1)/fP (p)}, and
dp = c min{1, fP (p)/fP (p + 1)}
for some c as large as possible so that bp + dp ≤ 0.9
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Proposals and acceptance ratios
Change in variance. (Move within Cp)

The new variance V ′ will be be so that

log(V ′/V) ∼ Unif( [−𝛽, 𝛽])

meaning V ′ = Veu where u ∼ Unif( [−𝛽, 𝛽]) and so,

fV ′ |V (v ′, v) =
{

1
2𝛽v′

, v ′ ∈
[
ve−𝛽 , ve𝛽]

0, otherwise

Acceptance ratio reduces to

𝛼 = 1 ∧ (likelihood ratio)
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Proposals and acceptance ratios
Change in pole position. (Move within Cp)

Randomly select j = 1, . . . , p (uniformly) and the pole Zj will be perturbed by
ũ ∼ CN (Zj , 𝜋) conditioned on Z ′

j = Zj + ũ ∈ D. This gives

fZ′
j |Zj (z′, z) ∝

{
1
𝜋𝜋

exp
(−1
𝜋
|z′ − z |2

)
[I(z)]−1, z′ ∈ D

0, otherwise

where I(z) = 1
𝜋𝜋

∫
D
exp

(
−1
𝜋
|z′ − z |2

)
dz′ w.r.t Lebesgue measure on C.

Acceptance ratio reduces to

𝛼 = 1 ∧ (likelihood ratio ) × I(z′)
I(z)
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Proposals and acceptance ratios

Birth of a pole. Move from Cp to Cp+1 All we do is append a pole drawn
from the uniform distribution on the unit disk.

𝛼 = 1 ∧ (likelihood ratio) × 𝜋p𝜆

p + 1
dp+1

bp

Death of a pole. Move from Cp to Cp+1 All we do is delete a pole drawn
from the uniform distribution of current poles.

𝛼 = 1 ∧ (likelihood ratio) × p + 1
𝜋p𝜆

bp

dp+1
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Results?

low acceptance rate ≈ 0.0005 (after N = 50,000 steps)
Instability 𝛼 → −∞
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Thank you!
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