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Setting

Goal

Cells: xi ∈ R2 for i = 1, . . . , n

C-sites ci,j,k ∈ R2

for i, j = 1, . . . , N and k = 1, . . . , nij

Parameters

Spring constant: α

Cell drag coe�cient: γ1 > 0

C-site drag coe�cient: γ2 > 0 (γ1 > γ2)

x1 x2

x3

x4

x5

c1,2,1

c1,2,2

c1,3,1
c1,4,1 c2,3,1

c4,5,1

c4,5,2

c3,3,1
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Formulation of the Model

Forces

Body Force:

f : [0,∞) → ∞
decreasing, convex,

supported over [0, r],
blows up at 0

Hookean spring, zero

rest length

Drag, proportional

to velocity

α(xi − ci,j,1)

α(ci,j,1 − xi)

f(∥xj − xi∥)
xj − xi

∥xj − xi∥

f(∥xi − xj∥)
xi − xj

∥xi − xj∥

xi

γ1

xj

γ1

ci,j,1 γ2

ci,j,k γ2
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Formulation of the Model

Newton's second Law of motion, applied to a cell:

mẍi =

n∑
j=1
j ̸=i

f(∥xi − xj∥)
xi − xj

∥xi − xj∥
(body forces)

+

n∑
j=1

ni,j∑
k=1

α(ci,j,k − xi) (c-site forces)

− γ1ẋi (drag)

Low Reynolds number environment implies ẍi = 0 for

i = 1, 2, . . . , n.

Equations for c-sites are similarly derived.
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i = 1, 2, . . . , n.

Equations for c-sites are similarly derived.

4/34



Model Reduction
Results

Hookean Cell Systems of Two Cells and One c-Site
Several c-Sites, The c-Site reduction Theorems

Conclusion and Future Work

Formulation of the Model

Newton's second Law of motion, applied to a cell:

mẍi =

n∑
j=1
j ̸=i

f(∥xi − xj∥)
xi − xj

∥xi − xj∥
(body forces)

+

n∑
j=1

ni,j∑
k=1

α(ci,j,k − xi) (c-site forces)
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Formulation of the Model

Equation of Motion of Cells and C-sites


γ1ẋi =

n∑
j=1
j ̸=i

f(∥xi − xj∥)
xi − xj

∥xi − xj∥
+

n∑
j=1

ni,j∑
k=1

α(ci,j,k − x1)

γ2ċi,j,k = α(xi − ci,j,k) + α(xj − ci,j,k)

xi ranges over all the cells

ci,j,k ranges over all the c-sites.

For x = (x1, . . . ,xn, . . . , ci,j,k, . . . ) ∈ R2n+2m we may easily

rewrite the system to be of the form

ẋ = f(x).
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Center of Drag

Center of Drag

De�nition

In a cell system with x = (x1, . . . ,xn, . . . , ci,j,k, . . . ) ∈ R2n+2m

the center of drag of the cell system is de�ned to be the point

xcod =

n∑
i=1

γixi +
∑
i<j

ni,j∑
k=1

γi,j,kci,j,k

n∑
i=1

γi +
∑
i<j

ni,j∑
k=1

γi,j,k

.

Proposition

In our set up, the center of drag is conserved throughout the

entire evolution of that system.
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Center of Drag

Existence and Uniqueness

We classify certain parameter spaces:

De�nition (Type 1)

Function f as stated

Cells share common drag

coe�cient γ1

C-sites share common drag

coe�cient γ2

One common spring

constant α

De�nition (Type 2)

Function f as stated

Cells share common drag

coe�cient γ1

C-sites drag coe�cients

may vary between sites

Spring constants also may

vary

Theorem (Global Existence and Uniqueness)

For problems of type 2 there exist a unique solution on [0,∞).
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

Hookean Cell Systems of Two Cells and One c-Site

Let Ĥ be the Hookean Cell Systems of Two Cells and One c-Site

given by
γ1ẋ1 = f(∥x1 − x2∥) x1−x2

∥x1−x2∥ + α(c− x1)

γ1ẋ2 = f(∥x1 − x2∥) x2−x1
∥x1−x2∥ + α(c− x2)

γ2ċ = α(x1 − c) + α(x2 − c)
x1(0) = (0, 0), x2(0) = (l, 0), and c(0) = (xc(0), yc(0)).

x

y

γ1 γ1

γ2

f(∥x1 − x2∥)

α α

x1 x2

c1,2,1
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

Two Regimes

It is useful to consider the problem in two cases:

Regime 1. ∥x2 − x1∥ ≥ r (linear)

Regime 2. ∥x2 − x1∥ < r (Nonlinear)
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Regime 1: beyond the Support of f

In this regime the system may be written without the body

force terms, seen here
γ1ẋ1 = α(c− x1)
γ1ẋ2 = α(c− x2)
γ2ċ = α(x1 − c) + α(x2 − c)

x1 = (0, 0),x2 = (l, 0), c = (xc(0), yc(0))

where l > r. We solved this by nondimensionalizing the system

and then using elementary di�erential equations techniques.
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Regime 2: Within the Support of f

The Solution

x1(t) =
xc(0)γ2 + lγ1

2γ1 + γ2
−

l

2
e−αt/γ1 −

2xc(0)γ2 − lγ2

2(2γ1 + γ2)
e−α(γ−1

1 +2γ−1
2 )t

y1(t) =
yc(0)γ2

2γ1 + γ2
−

yc(0)γ2

2γ1 + γ2
e−α(γ−1

1 +2γ−1
2 )t

x2(t) =
xc(0)γ2 + lγ1

2γ1 + γ2
+

l

2
e−αt/γ1 −

2xc(0)γ2 − lγ2

2(2γ1 + γ2)
e−α(γ−1

1 +2γ−1
2 )t

y2(t) =
yc(0)γ2

2γ1 + γ2
−

yc(0)γ2

2γ1 + γ2
e−α(γ−1

1 +2γ−1
2 )t

xc(t) =
xc(0)γ2 + lγ1

2γ1 + γ2
+

2xc(0)γ1 − lγ1

2γ1 + γ2
e−α(γ−1

1 +2γ−1
2 )t

yc(t) =
yc(0)γ2

2γ1 + γ2
+

2yc(0)γ1

2γ1 + γ2
e−α(γ−1

1 +2γ−1
2 )t.

This then provides the exact values of x, at least until x leaves

the set θ2,r × R2.
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

Analysis of the Solution

Observation 1

First of all note that y1 and y2 are identical: no rotation occurs

between the two cells. (in regime 1)

Observation 2

The path that c travels is a line.

Observation 3

∥x1(t)− x2(t)∥ = le−αt/γ1

We may determine precisely when and where the system will

exit regime 1.
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Regime 2: Within the Support of f

We analyze this nonlinear system in a few steps.

1 Find equilibria of the system.

2 Determine stability.

2 Use this information (and work in regime 1) to guess at

solutions. (If solutions are valid they are unique)
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of ẋ = f(x)

To solve for the equilibria (if any) of the nonlinear system set

the derivative terms equal to 0. So, that

0 = f(x)

or

0 =f(∥x1 − x2∥)
x1 − x2

∥x1 − x2∥
+ α(c− x1)

0 =f(∥x1 − x2∥)
x2 − x1

∥x1 − x2∥
+ α(c− x2)

0 =α(x1 − c) + α(x2 − c).

The last equation will only be satis�ed if

c =
x1 + x2

2
.
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Set Up
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The Equilibria of ẋ = f(x)

Substituting this for c into the �rst and second equations

reduces the system to

0 =f(∥x1 − x2∥)
x1 − x2

∥x1 − x2∥
+ α

(
x2 − x1

2

)
0 =f(∥x1 − x2∥)

x2 − x1

∥x1 − x2∥
+ α

(
x1 − x2

2

)
or more simply

0 =

(
f(∥x1 − x2∥)
∥x1 − x2∥

− α

2

)
(x1 − x2)

0 =

(
f(∥x1 − x2∥)
∥x1 − x2∥

− α

2

)
(x2 − x1).
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of ẋ = f(x)

And so,
f(∥x1 − x2∥)
∥x1 − x2∥

− α

2
= 0,

or

2f(∆x) = α∆x, (∆x = ∥x1 − x2∥)

De�ne r0 be the unique �xed point of 2
αf .

Necessary and su�cient conditions for the critical points

x ∈ R6 is a cricitcal point if and only if

(1) c =
x1 + x2

2
and

(2) ∥x1 − x2∥ = r0.

16/34



Model Reduction
Results

Hookean Cell Systems of Two Cells and One c-Site
Several c-Sites, The c-Site reduction Theorems

Conclusion and Future Work

Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of ẋ = f(x)

Let c(f) denote the set of equilibria of ẋ = f(x). It can be

shown ⋃
θ∈R

Lθ

(
x0 +W

)
= c(f),

where

W = span





1
0
1
0
1
0

 ,



0
1
0
1
0
1




, and x0 =



0
0
r0
0
r0
2
0


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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of ẋ = f(x)

Theorem

c(f) is a smooth submanifold of R2n+2m

The above formulation of c(f) recommends that it may be the

image of a functions and in fact it is G : R3 → c(f) ⊂ R6 by

G(xa, ya, θ) =



r0
2 cos θ + r0

2 + xa
r0
2 sin θ + ya

r0
2 cos(θ + π) + r0

2 + xa
r0
2 sin(θ + π) + ya

xa +
r0
2

ya

 ,

Notice G is smooth and its �rst partials exists.
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Set Up
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Regime 2: Within the Support of f

The Equilibria of ẋ = f(x)

These partials taken at some point (xa, ya, θ) provide a basis for

the tangent space at G(xa, ya, θ). This basis is developed below:

Gxa =



1
0
1
0
1
0

 , Gya =



0
1
0
1
0
1

 , and Gθ =



− r0
2 sin θ

r0
2 cos θ

− r0
2 sin(θ + π)

r0
2 cos(θ + π)

0
0

 .
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Set Up
Regime 1: beyond the Support of f
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The Equilibria of ẋ = f(x)

Simplifying Gθ the basis of the tangent space of c(f) at some

point (xa, ya, θ) is



1
0
1
0
1
0

 ,



0
1
0
1
0
1

 ,



tan θ
−1

− tan θ
1
0
0




.
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Stability of the equilibria

In order to study the stability of these equilibria it will be useful

to simplify f by de�ning a function g : R4 → R as

g(x1, y1, x2, y2) = g(x1,x2) =
f(∥x1 − x2∥)
γ1∥x1 − x2∥

.

This way,

f(x) =


(
g(x1,x2)− α

γ1

)
x1 −g(x1,x2)x2 + α

γ1
c

−g(x1,x2)x1 +
(
g(x1,x2)− α

γ1

)
x2 + α

γ1
c

α
γ2
x1 + α

γ2
x2 −2α

γ2
c

 .
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Stability of the equilibria

So, then Df(x̃) may be expressed as

f ′(r0)− α
2

γ1r20



(∆x)2 ∆x∆y −(∆x)2 −∆x∆y 0 0
∆x∆y (∆y)2 −∆x∆y −(∆y)2 0 0
(∆x)2 ∆x∆y −(∆x)2 −∆x∆y 0 0
∆x∆y (∆y)2 −∆x∆y −(∆y)2 0 0

0 0 0 0 0 0
0 0 0 0 0 0



+
α

2γ1



−1 0 −1 0 2 0
0 −1 0 −1 0 2
−1 0 −1 0 2 0
0 −1 0 −1 0 2
2γ1
γ2

0 2γ1
γ2

0 −4γ1
γ2

0

0 2γ1
γ2

0 2γ1
γ2

0 −4γ1
γ2


where ∆x = x̃1 − x̃2 and ∆y = ỹ1 − ỹ2.

22/34



Model Reduction
Results

Hookean Cell Systems of Two Cells and One c-Site
Several c-Sites, The c-Site reduction Theorems

Conclusion and Future Work

Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Stability of the equilibria

The eigenvalues of Df(x̃) are

0, 0, 0,−α
(

1
γ1

+ 2
γ2

)
,−α

(
1
γ1

+ 2
γ2

)
, 1
γ1

(
f ′(r0)− α

2

)
The eigenvectors of the zero eigenvalues are:

0
1
0
1
0
1

 ,



1
0
1
0
1
0

 , and



y1−y2
x1−x2

−1

− y1−y2
x1−x2

1
0
0

 .

It should be noted that
y1 − y2
x1 − x2

= tan θ. (this is because θ from

the parameterization of c(f) was de�ned to be the angle from

the positive x-axis the solution was rotated counterclockwise)
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Stability of the equilibria

What does this mean?

c(f) = Uc (The center manifold and the set of equilibria of

ẋ = f(x) are the same.)

There is no unstable manifold. (Since all of the nonzero

eigenvalues of Df(x̃) are negative.)

All the equilibria are stable.
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The Stability of the equilibria

What does this mean?

c(f) = Uc (The center manifold and the set of equilibria of

ẋ = f(x) are the same.)

There is no unstable manifold. (Since all of the nonzero

eigenvalues of Df(x̃) are negative.)

All the equilibria are stable.
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The solution to our system


γ1ẋ1 = f(∥x1 − x2∥) x1−x2

∥x1−x2∥ + α(c− x1)

γ1ẋ2 = f(∥x1 − x2∥) x2−x1
∥x1−x2∥ + α(c− x2)

γ2ċ = α(x1 − c) + α(x2 − c)
x1(0) = (0, 0), x2(0) = (l, 0), and c(0) = (xc(0), yc(0)).

Let g(x1, x2, y1, y2) = f(∥x1 − x2∥)/∥x1 − x2∥, and get

γ1ẋ1 = g(x1, x2, y1, y2)(x1 − x2) + α(xc − x1)
γ1ẏ1 = g(x1, x2, y1, y2)(y1 − y2) + α(yc − y1)
γ1ẋ2 = g(x1, x2, y1, y2)(x2 − x1) + α(xc − x2)
γ1ẏ2 = g(x1, x2, y1, y2)(y2 − y1) + α(yc − y1)
γ2ẋc = α(x1 − xc) + α(x2 − xc)
γ2ẏc = α(y1 − yc) + α(y2 − yc).
x1(0) = 0, y1(0) = 0, x2(0) = l, y2(0) = 0,
xc(0) = cx, and yc(0) = cy.
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The solution to our system

We make a shrewd guess: y1(t) = y2(t) =: y(t) (This is possible
since y1(0) = y2(0) = 0)
Isolate the y-components and solve

γ1ẏ1 = g(x1, x2, y1, y2)(y1 − y2) + α(yc − y1)
γ1ẏ2 = g(x1, x2, y1, y2)(y2 − y1) + α(yc − y1)
γ2ẏc = α(y1 − yc) + α(y2 − yc).
y1(0) = 0, y2(0) = 0, yc(0) = cy.

becomes 
γ1ẏ = α(yc − y)
γ2ẏc = 2α(y − yc)
y(0) = 0, yc(0) = cy.

This wins us y1(t), y2(t), and yc(t).
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Set Up
Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The solution to our system

We then use the conservation of the center of drag to relate

x1(t), x2(t), and xc(t), in

γ1x1(t) + γ1x2(t) + γ2xc(t)

2γ1 + γ2
=

xc(0)γ2 + lγ1
2γ1 + γ2

. (1)

Plugging this into the xc(t) equation of the system (which is

linear)

γ2ẋc = α(x1 − xc) + α(x2 − xc),

allows us to �nd xc(t) explicitly.
This gives a relation between x1(t) and x2(t) which can be used

in conjunction with

γ1ẋ1 = g(x1, x2, y1, y2)(x1 − x2) + α(xc − x1)

to solve x1(t).
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Set Up
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Regime 2: Within the Support of f

The solution to our system
x1(t) satis�es the di�erential equation:

γ1ẋ1 =− f

(
2x1 − l −

2γ2xc(0)− lγ2

2γ1 + γ2

(
1− e−α(γ−1

1 +2γ−1
2 )t

))
+ α

(
xc(0)γ2 + lγ1

2γ1 + γ2
+

2xc(0)γ1 − lγ1

2γ1 + γ2
e−α(γ−1

1 +2γ−1
2 )t − x1

)
with x1(0) = 0.

x2 = l − x1 +
γ2
γ1

(xc(0)− xc(t)).

y1(t) =
yc(0)γ2
2γ1 + γ2

− yc(0)γ2
2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

y2(t) =
yc(0)γ2
2γ1 + γ2

− yc(0)γ2
2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

xc(t) =
xc(0)γ2 + lγ1

2γ1 + γ2
+

2xc(0)γ1 − lγ1
2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t

yc(t) =
yc(0)γ2
2γ1 + γ2

+
2yc(0)γ1
2γ1 + γ2

e−α(γ−1
1 +2γ−1

2 )t
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C-site Reduction Theorem for Two Cells
The theorem states that the several c-site problem:

γ1ẋ1 = f(∥x1 − x2∥) x1−x2
∥x1−x2∥

+
m∑
i=1

α(ci − x1)

γ1ẋ2 = f(∥x1 − x2∥) x2−x1
∥x1−x2∥

+
m∑
i=1

α(ci − x2)

γ2ċ1 = α(x1 − c1) + α(x2 − c1)
.
.
.

γ2ċm = α(x1 − cm) + α(x2 − cm)
x(0) = ((0, 0), (l, 0), c1(0), c2(0), . . . , cm(0))T

prescribes the same cell movement as the reduced cell system:

γ1ẋ1 = f(∥x1 − x2∥) x1−x2
∥x1−x2∥

+
m∑
i=1

α(ci − x1)

γ1ẋ2 = f(∥x1 − x2∥) x2−x1
∥x1−x2∥

+

m∑
i=1

α(ci − x2)

mγ2ċ = mα(x1 − c) +mα(x2 − c)

x(0) =

(
(0, 0), (l, 0),

1

m

∑m
k=1 ck(0)

)T

29/34



Model Reduction
Results

Hookean Cell Systems of Two Cells and One c-Site
Several c-Sites, The c-Site reduction Theorems

Conclusion and Future Work

C-site Reduction Theorem for Two Cells
General C-site Reduction Theorem

C-site Reduction Theorem for Two Cells

α

α

α

α

x1 x2

c1 γ2

c2 γ2

c4 γ2

c3 γ2

4α

x1 x2

4γ2

c

c = 1
4

4∑
i=1

ci
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C-site Reduction Theorem for Two Cells

Sketch of proof:

Let x(t) = (x1(t),x2(t), c1, . . . , cm) be the unique solution
to the several c-site problem.

Verify that

x̃(t) =

(
x1(t),x2(t),

1

m

m∑
k=1

ck(t)

)

is the unique solution to the reduced c-site problem, with

the appropriate parameters (mα for spring constants, mγ
for drag coe�cient)
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General C-site Reduction Theorem

α

x1

x2

x3

x4

x5

x6

c1,2,1

c1,2,2γ2

c1,5,1

c1,5,2

c2,4,1

c3,5,1

c1,4,1

c1,3,1c4,6,1

c4,6,3

c4,6,2

 γ1ẋj =
n∑

i=1

f(∥xj − xi∥)
xj − xi

∥xj − xi∥
+

n∑
i=1

(ni,j∑
k=1

α(ci,j,k − xj)

)
γ2ċi,j,k = α(xi − ci,j,k) + α(xj − ci,j,k).
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General C-site Reduction Theorem

α1,2 = 2α

x1

x2

x3

x4

x5

x6

c1,2

γ1,2 = 2γ2

c1,5

c2,4

c3,5

c1,4

c1,3

c4,6

c1,2 =
1
2

2∑
k=1

c1,2,k

 γ1ẋj =

n∑
i=1

f(∥xj − xi∥)
xj − xi

∥xj − xi∥
+

n∑
i=1

αni,j (ci,j − xj)

γ2ni,j ċi,j = αni,j (xi − ci,j) + αni,j (xj − ci,j)
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Conclusion and Future Work

Some questions of interest to us are:

1 What are the equilibria of a Hookean cell system of n cells?

2 What is the behavior of the system at that equilibria?

3 What is the next step in modifying the model to make it a

closer approximation of the motion of a slug?

4 How can stochastics be introduced to such a frame work?
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