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Model Reduction

Setting

o Cells: x; e R2fori=1,...,n
o C-sites ¢; ;1 € R2
fori,j=1,...,Nand k=1,...,n
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Model Reduction

Setting

C1.21

o Cells: x; e R2fori=1,...,n
o C-sites ¢; ;1 € R2
fori,j=1,...,Nand k=1,...,n

Parameters

e Spring constant: «

@ Cell drag coefficient: v > 0

o C-site drag coefficient: v > 0 (71 > 7v2)
o
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Model Reduction

Formulation of the Model

e Body Force:
f:]0,00) = o0
decreasing, convex,
supported over [0, 7],
blows up at 0

o Hookean spring, zero
rest length

e Drag, proportional
to velocity
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Model Reduction

Formulation of the Model

o Newton’s second Law of motion, applied to a cell:

mX; = Zf l|lx; — x]\|)| (body forces)

[xi —x; H
J#z
n Nij
+ Z Z a(c;jr —X;) (c-site forces)
j=1 k=1
— N (drag)
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Model Reduction

Formulation of the Model

o Newton’s second Law of motion, applied to a cell:

m¥; = Z F(llxs — xju)' (body forces)

[xi —x; H
J#z
n Nij
+ Z Z a(c;jr —X;) (c-site forces)
j=1 k=1
— N (drag)

o Low Reynolds number environment implies %X; = 0 for
1=1,2,...,n
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Model Reduction

Formulation of the Model

o Newton’s second Law of motion, applied to a cell:

m¥; = Z F(llxs — xju)' (body forces)

[xi —x; H
J#z
n Nij
+ Z Z a(c;jr —X;) (c-site forces)
j=1 k=1
— N (drag)

o Low Reynolds number environment implies %X; = 0 for
1=1,2,...,n

o Equations for c-sites are similarly derived.
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Model Reduction

Formulation of the Model

Equation of Motion of Cells and C-sites

n X: — X5 AR
X = Z S(ll=i = Xj||)m + a(Cijk —%1)
j=1 v J =1 k=1
' J#i
Y2Cijk = (Xi—Cijk) +a(X; = Cijk)

x; ranges over all the cells
c; j 1 ranges over all the c-sites.

For @ = (X1,...,Xny ..+, Cijk,-..) € R¥T?™ we may easily
rewrite the system to be of the form
z = f(x).
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Results
1 \n Center of Drag
1

Center of Drag

In a cell system with & = (X1,...,Xp,...,Cijk,...) € RZTM
the center of drag of the cell system is defined to be the point
N j
nyzxz aF ZZ’Y@]k z,],
1<j k=1
Xcod = g
Z% +>_ D Viak
1<j k=1

Proposition

In our set up, the center of drag is conserved throughout the
entire evolution of that system.
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Results

Existence and Uniqueness

Center of Drag

We classify certain parameter spaces:

Definition (Type 1)

Definition (Type 2)

o Function f as stated

o Cells share common drag
coefficient v

o C-sites share common drag
coefficient o

@ One common spring
constant «

e Function f as stated

o Cells share common drag
coefficient v,

o C-sites drag coefficients
may vary between sites

@ Spring constants also may
vary

Theorem (Global Existence and Uniqueness)

For problems of type 2 there exist a unique solution on [0,00).
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Hookean Cell Systems of Two Cells and One c-Site i : beyond the Support of f

2: ‘\1 hin the Support of f

Hookean Cell Systems of Two Cells and One c-Site

Let $ be the Hookean Cell Systems of Two Cells and One c-Site
given by

nx = f(llx1 —xzl]) ||§1_§2|| + alc—x1)
Tx2 = f(|[x1 —x2l]) ||§f_§§|| + afc — x2)
Y€ = a(x; —c)+ a(xz —c)
Xl(O) = (0,0), x2(0) = <l70)7 and ¢(0) = (1'(;(0),9(;(0))-
)

1

X9 €T
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Hookean Cell Systems of Two Cells and One c-Site

Two Regimes

It is useful to consider the problem in two cases:
Regime 1. ||x2 — x1|| > r (linear)

Regime 2. ||x2 — x1|| < r (Nonlinear)
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Hookean Cell Systems of Two Cells and One c-Site e 1: beyond the Support of f
Regime 2: Within the Support of f

Regime 1: beyond the Support of f

In this regime the system may be written without the body
force terms, seen here

’}/1)'(1 = Oé(C — X1)
nx2 = afc—x2)
Y€ = a(x; —c)+ a(xy —c)
X1= (070 ) X2 = (Z,O),C = (mc(O),yc(O))

where [ > r. We solved this by nondimensionalizing the system
and then using elementary differential equations techniques.
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Set Up
Hookean Cell Systems of Two Cells and One c-Site Regime 1: beyond the Support of f
Regime 2: Within the Support of f

The Solution

z1(t) = 2Oz in 1 —arjm 22072 =12 oty 2y e
it 2 2271 +72)
y1(t) = ve(@r2  4c(0)7 =y T +2vy e
271 + 72 271 + 72
z2(t) = ze@n2 +im + Logmat/m _ 280072 = 1v2 —a(yytyays by
271 + 72 2 2(271 + 72)
ya(t) = Y02 Y072 —a(r7t42qz e
2vi+y2 2mit+ 72
SCC(t) _ a:c(O)VQ + l’Yl 2:86(0)')/1 — l’yl e*"‘('Y;lﬁLQ’Y;l)t
271 + 72 271 + Y2
vo(t)y = 072 | 250N —a(y7 42y e,
2vi+72 271 +2

This then provides the exact values of x, at least until « leaves
the set 0, x R2.
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Set Up
Hookean Cell Systems of Two Cells and One c-Site Regime 1: beyond the Support of f
Regime 2: Within the Support of f

Analysis of the Solution

Observation 1

First of all note that y; and y» are identical: no rotation occurs
between the two cells. (in regime 1)
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Set Up

Hookean Cell Systems of Two Cells and One c-Site Regime 1: beyond the Support of f
Regime 2: Within the Support of f

Analysis of the Solution

Observation 1

First of all note that y; and y» are identical: no rotation occurs
between the two cells. (in regime 1)

The path that c travels is a line.
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Set Up
Hookean Cell Systems of Two Cells and One c-Site Regime 1: beyond the Support of f
1 h lu h leg 2: Within the Support of f

Analysis of the Solution

Observation 1

First of all note that y; and y» are identical: no rotation occurs
between the two cells. (in regime 1)

The path that c travels is a line.

Observation 3

i () = x2(8)|| =t~/

We may determine precisely when and where the system will
exit regime 1.
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Hookean Cell Systems of Two Cells and One c-Site e 1: beyond the Support of f
2: Within the Support of f

Regime 2: Within the Support of f

We analyze this nonlinear system in a few steps.
1 Find equilibria of the system.
2 Determine stability.

2 Use this information (and work in regime 1) to guess at
solutions. (If solutions are valid they are unique)
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Hookean Cell Systems of Two Cells and One c-Site R 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of & = f(x)

To solve for the equilibria (if any) of the nonlinear system set
the derivative terms equal to 0. So, that

0= f(x)
or
X] — X2
0 =f(|lx1— X2H)m +a(c—x1)
X2 — X1
0 =f(|[x1 — X2H)m + a(c —x2)

0 =a(x; — ¢) + a(xz — ¢).
The last equation will only be satisfied if

X1 + X2
5
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Hookean Cell Systems of Two Cells and One c-Site veyond the Support of f
> 2: Within the Support of f

The Equilibria of & = f(x)

Substituting this for ¢ into the first and second equations
reduces the system to

X1 — X Xo — X
0 = F({lx1 — xo) L2 +a(2 1)

[|x1 — xa| 2

X9 — X X1 —X
0 =f(|x1 — xa])) T

[[x1 — x| 2

or more simply

_(fxi—xefl) ey
O_<Hm—xﬂ 2>(1 g
_(fUxi=xel) ey
0_<meﬂ 2>(2 v
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Hookean Cell Systems of Two Cells and One c-Site gime 1: beyond the Support of f
1 lu Regime 2: Within the Support of f

The Equilibria of & = f(x)

And so,
fllx1 —xal[)

or

2f(Az) = adz,  (Az=lxs - xa])
Define ry be the unique fixed point of % f.

Necessary and sufficient conditions for the critical points

x € RS is a cricitcal point if and only if

(1) c= g and

(2)  lIx1 — %2l = ro.
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Hookean Cell Systems of Two Cells and One c-Site gime 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of & = f(x)

Let ¢(f) denote the set of equilibria of & = f(a). It can be

shown
U Lo (2" + W) = c(F),
OcR
where
1 0 0
0 1 0
. 1 O 0 __ o
W = span o |1 1 , and x = 0
1 0 2
L\ O 1 0

17/34



Hookean Cell Systems of Two Cells and One c-Site gime 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of & = f(x)

c(f) is a smooth submanifold of R?"+2m

The above formulation of ¢(f) recommends that it may be the
image of a functions and in fact it is G : R3 — ¢(f) C R® by

Dcosl + 2+ xq
7 sinf + y,
Dcos(f+m)+ 2+,
2 sin(0 +7) + yq ’
T+ 3
Ya

G(xm Ya, 6) =

Notice G is smooth and its first partials exists.
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Hookean Cell Systems of Two Cells and One c-Site gime 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of & = f(x)

These partials taken at some point (x4, y4,6) provide a basis for
the tangent space at G(xg4,Yyq, ). This basis is developed below:

1 0 — % in
0 1 3 cos 0
|1 10 | —&sin(0 + )
G:pa - 0 9 Gya - 1 ) a‘nd GH - 7‘70 COS(9 + 7_‘_)
1 0 0
0 1 0
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Hookean Cell Systems of Two Cells and One c-Site gime 1: beyond the Support of f
Regime 2: Within the Support of f

The Equilibria of & = f(x)

Simplifying Gy the basis of the tangent space of ¢(f) at some
point (x4, Ya,0) is

(/1 0 tan 6
0 1 -1
1 0 —tan6
0 ’ 1 ’ 1
1 0 0

L\ O 1 0
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Hookean Cell Systems of Two Cells and One c-Site le 8 ond the Support of f
Reglme 2: V\ lthm the Support of f

The Stability of the equilibria

In order to study the stability of these equilibria it will be useful
to simplify f by defining a function g : R* — R as

X1 — X2
g(fﬂbyl,ﬂ?z,yz) = 9(X1,X2) = M
Y1llx1 — x|
This way,
(g(XLXz) - %) X1 —g(x1,X2)%x2 +2c

f(x) = —g(x1,X2)x1 + (g(xl,xQ) — %) X9 +gc

«@ @ 2a

72 X1 T X2 T3¢
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Hookean Cell Systems of Two Cells and One c-Site Re

The Stability of the equilibria
So, then D f(&) may be expressed as

27

where Ax = 21 — 22 and Ay = g1 — 9o.

(Az)? AzAy —(Ax)?
AzAy (Ay)? —AzAy
(Az)? AzAy —(Ax)?
AzAy (Ay)? —AzAy
0 0 0
0 0 0
-1 0 -1 0 2
o -1 0 -1 0
-1 0 -1 0 2
o -1 0 -1 0
2% 0 2% 0 47;
0 2% 0 2% 0

rond the Support of f

—AzxAy
—(Ay)?
—AzxAy
—(Ay)?

O N O N O

—42,

OO OO oo

be,
2: W lthm the Support of f

O OO o oo
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Hookean Cell Systems of Two Cells and One c-Site le 8 ond the Support of f
Reglme 2: V\ 1thm the Support of f

The Stability of the equilibria

The eigenvalues of D f (&) are
2 1, 2) 1
0,0,0,—a(%+2) (5 +2) 5 (/o) - §)

The eigenvectors of the zero eigenvalues are:

0\ (1 =
1 0 -1
0 1 _ Y1~y
xr1—x
E E and 11 2
0 1 0
1 0 0
Y1 — Y2 o
It should be noted that ——== = tan 6. (this is because 6 from
Ty — T2

the parameterization of ¢(f) was defined to be the angle from
the positive z-axis the solution was rotated counterclockwise)
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Hookean Cell Systems of Two Cells and One c-Site e 1: beyond the Support of f
hin the Support of f

The Stability of the equilibria

What does this mean?

e ¢(f) = U. (The center manifold and the set of equilibria of
& = f(x) are the same.)
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Hookean Cell Systems of Two Cells and One c-Site e 1: beyond the Support of f
Re 2: Within the Support of f

The Stability of the equilibria

What does this mean?

e ¢(f) = U. (The center manifold and the set of equilibria of
& = f(x) are the same.)

@ There is no unstable manifold. (Since all of the nonzero
eigenvalues of D f (&) are negative.)
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Hookean Cell Systems of Two Cells and One c-Site e 1: beyond the Support of f
hin the Support of f

The Stability of the equilibria

What does this mean?

e ¢(f) = U. (The center manifold and the set of equilibria of
& = f(x) are the same.)

@ There is no unstable manifold. (Since all of the nonzero
eigenvalues of D f (&) are negative.)

o All the equilibria are stable.
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Hookean Cell Systems of Two Cells and One c-Site veyond the Support of f
> 2: Within the Support of f

The solution to our system

s = f(l - xel)) 222+ ale - x1)
nxe = f(lx1 —xal) =y + alc —x2)
7€ = a(x; —c)+ a(x2 —c)

XI(O) = (070)7 X2(0) = (l>0)a and C(O) = ($6(0)7yc(0))'
Let g(z1,22,y1,92) = f(|lx1 — x2||)/[|x1 — x2l|, and get

(i1 = g(z1,22,y1,92) (21 — x2) + ax. — 271)

(
7y = g(x1, 2, y1,92) (Y1 — Y2) + (ye — y1)
mie = g(x1,22,y1,92) (T2 — 1) + awe — 902)
MYz = g(x1,22,y1,92) (Y2 — y1) + (ye — y1)
Yoke = ar1 — ) + oz — ()
Yo = a(y1 — ye) + (Y2 — Ye)-

x1(0) =0, y1(0) =0, z2(0) =1, y2(0) =0,
( 7(0) = ¢z, and y.(0) = Cy-




Hookean Cell Systems of Two Cells and One c-Site R 1: beyond the Support of f
Regime 2: Within the Support of f

The solution to our system

We make a shrewd guess: y1(t) = y2(t) =: y(¢) (This is possible
since y1(0) = y2(0) = 0)
Isolate the y-components and solve

Yy = g1, 22, y1,92) (W1 — y2) + a(ye — Y1)
1y2 = g1, 22,91,%2) (Y2 — y1) + a(ye — Y1)
Y2le = (Y1 — Ye) + a(y2 — ye).
y1(0) =0, y2(0) =0, y.(0) = ¢.

becomes
MY = aye—y)
Yole = 2a(y - yc)
y(0) =0, y.(0) = ¢,.

This wins us y1(t), y2(t), and y.(t).
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Hookean Cell Systems of Two Cells and One c-Site le 8 ond the Support of f
Reglme 2: V\ 1thm the Support of f

The solution to our system

We then use the conservation of the center of drag to relate
x1(t), xo(t), and z.(t), in

y1w1(t) + y1z2(t) + y2xe(t)  20(0)y2 + 171‘ (1)

271 + 72 271 + 72

Plugging this into the x.(t) equation of the system (which is
linear)

Yode = a(xy — xc) + alre — ),
allows us to find z.(t) explicitly.
This gives a relation between x;(t) and x5(t) which can be used
in conjunction with

a1 = g(z1, 22, y1,¥2) (21 — x2) + a(xc — 1)

to solve x1(t).
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Hookean Cell Systems of Two Cells and One c-Site R 1: beyond the Support of f
Regime 2: Within the Support of f

The solution to our system
e x1(t) satisfies the differential equation:

iy = — f (er - 2v22(0) — ly2 (1 _ e—“(%_l'*'?v{l)t))
271 + 72

e (zc(O)w i 22O = ey a2y e x1)

291+ 72 271 + 72
with z1(0) = 0.
o 13 =1z + 22(2(0) — 7 (L))

4l

o yi(t) = Ye(0)v2  ye(0)r2 e 2y

2v1+72 271+ 2
o ya(t) = Ye(0)v2  ye(0)r2 e 275

2v1+72 21+ 2
zc(0)y2 +ly1 . 22.(0)y1 — Im oo 2

291 + 2 271 + 72

° c(t) _ yC(O)’}Q 2y0(0)71 e—a(yl_1+272_l)t

2i+v2 2+

e x.(t) =
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C-site uction Theorem for Two Cells
- . General C-site Reduction Theorem
Several c-Sites, The c-Site reduction Theorems

C-site Reduction Theorem for Two Cells
The theorem states that the several c-site problem:

nx = f(llx: *XZH)“zi ;zH +Z i —X1)
mnxz = f(llx1 —xz2|)) ||§f i;H + Z —X2)
72€1 =  a(x1 —c1) + a(xz — C1)
Y2€m = (X1 —cm) + a(X2 — cm

)
113(0) = ((07 0)7 (l7 0)7 C1(0)7C2(0)7 ) Cm(O))T
prescribes the same cell movement as the reduced cell system:

nx = f(llx1 —xzl]) ”:1 ;zu + Z i — X1)

Nx2 = f(llx1— x2||)|‘§f 2;“ +Z i — X2)
1=1

my2¢ =  ma(x1 —c¢) + ma(x2 —c)

2(0) = ((0.0).(,0), - TP (0
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C-site Reduction Theorem for Two Cells
Reduction Theorem

Several c-Sites, The c-Site reduction Theorems

C-site Reduction Theorem for Two Cell
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C-site Reduction Theorem for Two Cells

Q . . General C-site Reduction Theorem
Several c-Sites, The c-Site reduction Theorems

C-site Reduction Theorem for Two Cells

Sketch of proof:

o Let x(t) = (x1(t),x2(t),c1,...,Cp) be the unique solution
to the several c-site problem.

o Verify that

#(1) = (m(t),x?(t), = ch@))

k=1

is the unique solution to the reduced c-site problem, with
the appropriate parameters (ma for spring constants, m-y
for drag coefficient)
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Reduction Theorem for Two Cells

- , . , ral C-site Reduction Theorem
Several c-Sites, The c-Site reduction Theorems

General C-site Reduction Theorem

NET; = Zf ;- %H)H

V2Cijk = (mz —cijr) talz; — Cm,k)-
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ion Theorem for Two Cells
e Reduction Theorem

ral c-Sites, The c-Site reduction Theorems

General C-site Reduction Theorem

X2
X4 C1,
Cig T,2 = 272
011_’2 =2«
Cy,
C1,2.k
Xg
C15
X3
X5
C3,
T —Zf ([ — 5'31”) +Zanw (cij — ;)
H wzll
72”17302,1 = an;j (x; CZJ) +an;; (z; — Ci,j)
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Conclusion and Future Work

Conclusion and Future Work

Some questions of interest to us are:
O What are the equilibria of a Hookean cell system of n cells?
@ What is the behavior of the system at that equilibria?

@ What is the next step in modifying the model to make it a
closer approximation of the motion of a slug?

@ How can stochastics be introduced to such a frame work?
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