Steady State Configurations of Cells Connected by Cadherin Sites

Jared McBride

University of Arizona

jaredm@math.arizona.edu

March 20, 2019

イロト イ団 ト イヨト イヨト 一番

1/34

 $2Q$

Setting

Goal

Cells: $\mathbf{x}_i \in \mathbb{R}^2$ for $i = 1, \ldots, n$

\n- C-sites
$$
\mathbf{c}_{i,j,k} \in \mathbb{R}^2
$$
 for $i, j = 1, \ldots, N$ and $k = 1, \ldots, n_{ij}$
\n

 299

メロト メタト メミト メミト 一番

Setting

Goal

• Cells:
$$
\mathbf{x}_i \in \mathbb{R}^2
$$
 for $i = 1, ..., n$

\n- C-sites
$$
\mathbf{c}_{i,j,k} \in \mathbb{R}^2
$$
 for $i, j = 1, \ldots, N$ and $k = 1, \ldots, n_{ij}$
\n

Parameters

- Spring constant: α
- Cell drag coefficient: $\gamma_1 > 0$
- C-site drag coefficient: $\gamma_2 > 0$ ($\gamma_1 > \gamma_2$)

[Model Reduction](#page-1-0)

Results

[Several c-Sites, The c-Site reduction Theorems](#page-35-0) [Conclusion and Future Work](#page-40-0)

Formulation of the Model

Forces

- Body Force: $f : [0, \infty) \to \infty$ decreasing, convex, supported over $[0, r]$, blows up at 0
- Hookean spring, zero rest length
- Drag, proportional to velocity

メロメ メタメ メミメ メミメー 重 290 3/34

Formulation of the Model

Newton's second Law of motion, applied to a cell:

$$
m\ddot{\mathbf{x}}_i = \sum_{\substack{j=1 \ j \neq i}}^n f(||\mathbf{x}_i - \mathbf{x}_j||) \frac{\mathbf{x}_i - \mathbf{x}_j}{||\mathbf{x}_i - \mathbf{x}_j||}
$$
 (body forces)
+
$$
\sum_{j=1}^n \sum_{k=1}^{n_{i,j}} \alpha(\mathbf{c}_{i,j,k} - \mathbf{x}_i)
$$
 (c-site forces)
-
$$
\gamma_1 \dot{\mathbf{x}}_i
$$
 (drag)

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『 코 │ ◆ 9 Q Q*

Formulation of the Model

Newton's second Law of motion, applied to a cell:

$$
m\ddot{\mathbf{x}}_i = \sum_{\substack{j=1 \ j \neq i}}^n f(||\mathbf{x}_i - \mathbf{x}_j||) \frac{\mathbf{x}_i - \mathbf{x}_j}{||\mathbf{x}_i - \mathbf{x}_j||}
$$
 (body forces)
+
$$
\sum_{j=1}^n \sum_{k=1}^{n_{i,j}} \alpha(\mathbf{c}_{i,j,k} - \mathbf{x}_i)
$$
 (c-site forces)
-
$$
\gamma_1 \dot{\mathbf{x}}_i
$$
 (drag)

• Low Reynolds number environment implies $\ddot{\mathbf{x}}_i = 0$ for $i = 1, 2, \ldots, n$.

> K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 ▶) 할 수 있습니 4/34

Formulation of the Model

Newton's second Law of motion, applied to a cell:

$$
m\ddot{\mathbf{x}}_i = \sum_{\substack{j=1 \ j \neq i}}^n f(||\mathbf{x}_i - \mathbf{x}_j||) \frac{\mathbf{x}_i - \mathbf{x}_j}{||\mathbf{x}_i - \mathbf{x}_j||}
$$
 (body forces)
+
$$
\sum_{j=1}^n \sum_{k=1}^{n_{i,j}} \alpha(\mathbf{c}_{i,j,k} - \mathbf{x}_i)
$$
 (c-site forces)
-
$$
\gamma_1 \dot{\mathbf{x}}_i
$$
 (drag)

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 ▶) 할 수 있습니

- Low Reynolds number environment implies $\ddot{\mathbf{x}}_i = 0$ for $i = 1, 2, \ldots, n$.
- Equations for c-sites are similarly derived.

Formulation of the Model

Equation of Motion of Cells and C-sites

$$
\begin{cases}\n\gamma_1 \dot{\mathbf{x}}_i = \sum_{\substack{j=1 \ j \neq i}}^n f(||\mathbf{x}_i - \mathbf{x}_j||) \frac{\mathbf{x}_i - \mathbf{x}_j}{||\mathbf{x}_i - \mathbf{x}_j||} + \sum_{j=1}^n \sum_{k=1}^{n_{i,j}} \alpha(\mathbf{c}_{i,j,k} - \mathbf{x}_1) \\
\gamma_2 \dot{\mathbf{c}}_{i,j,k} = \alpha(\mathbf{x}_i - \mathbf{c}_{i,j,k}) + \alpha(\mathbf{x}_j - \mathbf{c}_{i,j,k})\n\end{cases}
$$

 \mathbf{x}_i ranges over all the cells $c_{i,j,k}$ ranges over all the c-sites.

For $\boldsymbol{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_n, \ldots, \mathbf{c}_{i,j,k}, \ldots) \in \mathbb{R}^{2n+2m}$ we may easily rewrite the system to be of the form

$$
\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}).
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 ▶) 할 수 있습니 5/34

[Center of Drag](#page-8-0)

Center of Drag

Definition

In a cell system with $\boldsymbol{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_n, \ldots, \mathbf{c}_{i,j,k}, \ldots) \in \mathbb{R}^{2n+2m}$ the *center of drag of the cell system* is defined to be the point

$$
\mathbf{x}_{\text{cod}} = \frac{\sum_{i=1}^{n} \gamma_i \mathbf{x}_i + \sum_{i < j} \sum_{k=1}^{n_{i,j}} \gamma_{i,j,k} \mathbf{c}_{i,j,k}}{\sum_{i=1}^{n} \gamma_i + \sum_{i < j} \sum_{k=1}^{n_{i,j}} \gamma_{i,j,k}}.
$$

Proposition

In our set up, the center of drag is conserved throughout the entire evolution of that system.

> K ロ K K 御 K K 唐 K K 唐 K I 重 QQ

[Center of Drag](#page-8-0)

Existence and Uniqueness

We classify certain parameter spaces:

Δ Definition (Type 1)

- Function f as stated
- Cells share common drag coefficient γ_1
- C-sites share common drag coefficient γ_2
- One common spring constant α

Definition (Type 2)

K ロンドイ 御 メ (語 メ (語 メ) 를

- \bullet Function f as stated
- Cells share common drag coefficient γ_1
- \bullet C-sites drag coefficients may vary between sites
- Spring constants also may vary

Theorem (Global Existence and Uniqueness)

For problems of type 2 there exist a unique solution on $[0,\infty)$.

 $2Q$

[Set Up](#page-10-0) [Regime 2: Within the Support of](#page-17-0) f

Hookean Cell Systems of Two Cells and One c-Site

Let $\mathfrak H$ be the Hookean Cell Systems of Two Cells and One c-Site given by

$$
\begin{cases}\n\gamma_1 \dot{\mathbf{x}}_1 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_1 - \mathbf{x}_2}{||\mathbf{x}_1 - \mathbf{x}_2||} + \alpha(\mathbf{c} - \mathbf{x}_1) \\
\gamma_1 \dot{\mathbf{x}}_2 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_2 - \mathbf{x}_1}{||\mathbf{x}_1 - \mathbf{x}_2||} + \alpha(\mathbf{c} - \mathbf{x}_2) \\
\gamma_2 \dot{\mathbf{c}} = \alpha(\mathbf{x}_1 - \mathbf{c}) + \alpha(\mathbf{x}_2 - \mathbf{c}) \\
\mathbf{x}_1(0) = (0, 0), \quad \mathbf{x}_2(0) = (l, 0), \text{ and } \quad \mathbf{c}(0) = (x_c(0), y_c(0)).\n\end{cases}
$$

[Set Up](#page-10-0)

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 ▶) 할 수 있습니

9/34

It is useful to consider the problem in two cases: Regime 1. $\|\mathbf{x}_2 - \mathbf{x}_1\| \geq r$ (linear) Regime 2. $\|\mathbf{x}_2 - \mathbf{x}_1\| < r$ (Nonlinear)

[Regime 1: beyond the Support of](#page-12-0) f

Regime 1: beyond the Support of f

In this regime the system may be written without the body force terms, seen here

$$
\begin{cases}\n\gamma_1 \dot{\mathbf{x}}_1 = \alpha (\mathbf{c} - \mathbf{x}_1) \\
\gamma_1 \dot{\mathbf{x}}_2 = \alpha (\mathbf{c} - \mathbf{x}_2) \\
\gamma_2 \dot{\mathbf{c}} = \alpha (\mathbf{x}_1 - \mathbf{c}) + \alpha (\mathbf{x}_2 - \mathbf{c}) \\
\mathbf{x}_1 = (0, 0), \mathbf{x}_2 = (l, 0), \mathbf{c} = (x_c(0), y_c(0))\n\end{cases}
$$

where $l > r$. We solved this by nondimensionalizing the system and then using elementary differential equations techniques.

[Model Reduction](#page-1-0)

Results

[Hookean Cell Systems of Two Cells and One c-Site](#page-10-0) [Several c-Sites, The c-Site reduction Theorems](#page-35-0) [Conclusion and Future Work](#page-40-0) [Regime 1: beyond the Support of](#page-12-0) f

The Solution

$$
x_1(t) = \frac{x_c(0)\gamma_2 + l\gamma_1}{2\gamma_1 + \gamma_2} - \frac{l}{2}e^{-\alpha t/\gamma_1} - \frac{2x_c(0)\gamma_2 - l\gamma_2}{2(2\gamma_1 + \gamma_2)}e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}
$$

\n
$$
y_1(t) = \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2} - \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2}e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}
$$

\n
$$
x_2(t) = \frac{x_c(0)\gamma_2 + l\gamma_1}{2\gamma_1 + \gamma_2} + \frac{l}{2}e^{-\alpha t/\gamma_1} - \frac{2x_c(0)\gamma_2 - l\gamma_2}{2(2\gamma_1 + \gamma_2)}e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}
$$

\n
$$
y_2(t) = \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2} - \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2}e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}
$$

\n
$$
x_c(t) = \frac{x_c(0)\gamma_2 + l\gamma_1}{2\gamma_1 + \gamma_2} + \frac{2x_c(0)\gamma_1 - l\gamma_1}{2\gamma_1 + \gamma_2}e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}
$$

\n
$$
y_c(t) = \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2} + \frac{2y_c(0)\gamma_1}{2\gamma_1 + \gamma_2}e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}.
$$

This then provides the exact values of x , at least until x leaves the set $\theta_{2,r} \times \mathbb{R}^2$.

> **KOD KOD KED KED E DAG** 11/34

[Model Reduction](#page-1-0) Results

[Hookean Cell Systems of Two Cells and One c-Site](#page-10-0) [Several c-Sites, The c-Site reduction Theorems](#page-35-0) [Conclusion and Future Work](#page-40-0) [Regime 1: beyond the Support of](#page-12-0) f

KOD KOD KED KED E DAG

12/34

Analysis of the Solution

Observation 1

First of all note that y_1 and y_2 are identical: no rotation occurs between the two cells. (in regime 1)

[Model Reduction](#page-1-0) Results

[Hookean Cell Systems of Two Cells and One c-Site](#page-10-0) [Several c-Sites, The c-Site reduction Theorems](#page-35-0) [Conclusion and Future Work](#page-40-0) [Regime 1: beyond the Support of](#page-12-0) f

KID KADI KEIN KEN EL ONO

12/34

Analysis of the Solution

Observation 1

First of all note that y_1 and y_2 are identical: no rotation occurs between the two cells. (in regime 1)

Observation 2

The path that **c** travels is a line.

[Regime 1: beyond the Support of](#page-12-0) f

Analysis of the Solution

Observation 1

First of all note that y_1 and y_2 are identical: no rotation occurs between the two cells. (in regime 1)

Observation 2

The path that **c** travels is a line.

Observation 3

$$
\|\mathbf{x}_1(t) - \mathbf{x}_2(t)\| = le^{-\alpha t/\gamma_1}
$$

We may determine precisely when and where the system will exit regime 1.

We analyze this nonlinear system in a few steps.

- 1 Find equilibria of the system.
- 2 Determine stability.
- 2 Use this information (and work in regime 1) to guess at solutions. (If solutions are valid they are unique)

KID KADI KEIN KEN EL ONO

[Regime 2: Within the Support of](#page-17-0) f

The Equilibria of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

To solve for the equilibria (if any) of the nonlinear system set the derivative terms equal to 0. So, that

$$
\mathbf{0} = \boldsymbol{f}(\boldsymbol{x})
$$

or

$$
0 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_1 - \mathbf{x}_2}{||\mathbf{x}_1 - \mathbf{x}_2||} + \alpha(\mathbf{c} - \mathbf{x}_1)
$$

$$
0 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_2 - \mathbf{x}_1}{||\mathbf{x}_1 - \mathbf{x}_2||} + \alpha(\mathbf{c} - \mathbf{x}_2)
$$

$$
0 = \alpha(\mathbf{x}_1 - \mathbf{c}) + \alpha(\mathbf{x}_2 - \mathbf{c}).
$$

The last equation will only be satisfied if

$$
\mathbf{c} = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}.
$$

KOD KOD KED KED E DAG

[Regime 2: Within the Support of](#page-17-0) f

The Equilibria of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

Substituting this for c into the first and second equations reduces the system to

$$
0 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_1 - \mathbf{x}_2}{||\mathbf{x}_1 - \mathbf{x}_2||} + \alpha \left(\frac{\mathbf{x}_2 - \mathbf{x}_1}{2}\right)
$$

$$
0 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_2 - \mathbf{x}_1}{||\mathbf{x}_1 - \mathbf{x}_2||} + \alpha \left(\frac{\mathbf{x}_1 - \mathbf{x}_2}{2}\right)
$$

or more simply

$$
\mathbf{0} = \left(\frac{f(||\mathbf{x}_1 - \mathbf{x}_2||)}{||\mathbf{x}_1 - \mathbf{x}_2||} - \frac{\alpha}{2}\right) (\mathbf{x}_1 - \mathbf{x}_2)
$$

$$
\mathbf{0} = \left(\frac{f(||\mathbf{x}_1 - \mathbf{x}_2||)}{||\mathbf{x}_1 - \mathbf{x}_2||} - \frac{\alpha}{2}\right) (\mathbf{x}_2 - \mathbf{x}_1).
$$

KOD KOD KED KED E DAG

[Regime 2: Within the Support of](#page-17-0) f

The Equilibria of
$$
\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})
$$

And so,

$$
\frac{f(||{\bf x}_1-{\bf x}_2||)}{||{\bf x}_1-{\bf x}_2||}-\frac{\alpha}{2}=0,
$$

or

$$
2f(\Delta x) = \alpha \Delta x, \qquad (\Delta x = \|\mathbf{x}_1 - \mathbf{x}_2\|)
$$

Define r_0 be the unique fixed point of $\frac{2}{\alpha}f$.

Necessary and sufficient conditions for the critical points

 $x \in \mathbb{R}^6$ is a cricitcal point if and only if

(1)
$$
\mathbf{c} = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2} \quad \text{and}
$$

(2)
$$
\|\mathbf{x}_1 - \mathbf{x}_2\| = r_0.
$$

◆ ロン → 御ン → ミン → ミン → ミー $2Q$ 16/34

The Equilibria of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

Let $c(f)$ denote the set of equilibria of $\dot{x} = f(x)$. It can be shown

$$
\bigcup_{\theta \in \mathbb{R}} L_{\theta} \left(\boldsymbol{x}^0 + W \right) = c(\boldsymbol{f}),
$$

where

$$
W = \text{span}\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}, \text{ and } \mathbf{x}^0 = \begin{pmatrix} 0 \\ 0 \\ r_0 \\ 0 \\ \frac{r_0}{2} \\ 0 \end{pmatrix}
$$

KOD KOD KED KED E DAG 17/34

[Regime 2: Within the Support of](#page-17-0) f

The Equilibria of $\dot{x} = f(x)$

Theorem

 $c(\boldsymbol{f})$ is a smooth submanifold of \mathbb{R}^{2n+2m}

The above formulation of $c(f)$ recommends that it may be the image of a functions and in fact it is $G : \mathbb{R}^3 \to c(f) \subset \mathbb{R}^6$ by

$$
G(x_a, y_a, \theta) = \begin{pmatrix} \frac{r_0}{2} \cos \theta + \frac{r_0}{2} + x_a \\ \frac{r_0}{2} \sin \theta + y_a \\ \frac{r_0}{2} \cos(\theta + \pi) + \frac{r_0}{2} + x_a \\ \frac{r_0}{2} \sin(\theta + \pi) + y_a \\ x_a + \frac{r_0}{2} \\ y_a \end{pmatrix},
$$

Notice G is smooth and its first partials exists.

KOD KOD KED KED E DAG 18/34

The Equilibria of
$$
\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})
$$

These partials taken at some point (x_a, y_a, θ) provide a basis for the tangent space at $G(x_a, y_a, \theta)$. This basis is developed below:

$$
G_{x_a} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, G_{y_a} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \text{ and } G_{\theta} = \begin{pmatrix} -\frac{r_0}{2}\sin\theta \\ \frac{r_0}{2}\cos\theta \\ -\frac{r_0}{2}\sin(\theta + \pi) \\ \frac{r_0}{2}\cos(\theta + \pi) \\ 0 \\ 0 \end{pmatrix}.
$$

KOD KOD KED KED E DAG 19/34

[Model Reduction](#page-1-0) Results [Hookean Cell Systems of Two Cells and One c-Site](#page-10-0) [Several c-Sites, The c-Site reduction Theorems](#page-35-0) [Conclusion and Future Work](#page-40-0) [Regime 2: Within the Support of](#page-17-0) f The Equilibria of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

Simplifying G_{θ} the basis of the tangent space of $c(f)$ at some point (x_a, y_a, θ) is

$$
\left\{\left(\begin{array}{c}1\\0\\1\\0\\1\\0\end{array}\right),\left(\begin{array}{c}{0}\\1\\0\\1\\0\\1\end{array}\right),\left(\begin{array}{c}{\tan\theta}\\-1\\-{\tan\theta}\\1\\0\\0\end{array}\right)\right\}.
$$

KOD KOD KED KED E DAG

The Stability of the equilibria

In order to study the stability of these equilibria it will be useful to simplify f by defining a function $g : \mathbb{R}^4 \to \mathbb{R}$ as

$$
g(x_1, y_1, x_2, y_2) = g(\mathbf{x}_1, \mathbf{x}_2) = \frac{f(||\mathbf{x}_1 - \mathbf{x}_2||)}{\gamma_1 ||\mathbf{x}_1 - \mathbf{x}_2||}.
$$

This way,

$$
f(\boldsymbol{x}) = \begin{pmatrix} \left(g(\mathbf{x}_1, \mathbf{x}_2) - \frac{\alpha}{\gamma_1} \right) \mathbf{x}_1 & -g(\mathbf{x}_1, \mathbf{x}_2) \mathbf{x}_2 & +\frac{\alpha}{\gamma_1} \mathbf{c} \\ -g(\mathbf{x}_1, \mathbf{x}_2) \mathbf{x}_1 & +\left(g(\mathbf{x}_1, \mathbf{x}_2) - \frac{\alpha}{\gamma_1} \right) \mathbf{x}_2 & +\frac{\alpha}{\gamma_1} \mathbf{c} \\ \frac{\alpha}{\gamma_2} \mathbf{x}_1 & +\frac{\alpha}{\gamma_2} \mathbf{x}_2 & -\frac{2\alpha}{\gamma_2} \mathbf{c} \end{pmatrix}.
$$

KOD KOD KED KED E DAG 21/34

[Regime 2: Within the Support of](#page-17-0) f

Results [Hookean Cell Systems of Two Cells and One c-Site](#page-10-0) [Several c-Sites, The c-Site reduction Theorems](#page-35-0) [Conclusion and Future Work](#page-40-0)

The Stability of the equilibria

So, then $\mathbf{D}f(\tilde{x})$ may be expressed as

[Model Reduction](#page-1-0)

$$
\frac{f'(r_0) - \frac{\alpha}{2}}{\gamma_1 r_0^2} \begin{pmatrix}\n(\Delta x)^2 & \Delta x \Delta y & -(\Delta x)^2 & -\Delta x \Delta y & 0 & 0 \\
\Delta x \Delta y & (\Delta y)^2 & -\Delta x \Delta y & -(\Delta y)^2 & 0 & 0 \\
(\Delta x)^2 & \Delta x \Delta y & -(\Delta x)^2 & -\Delta x \Delta y & 0 & 0 \\
\Delta x \Delta y & (\Delta y)^2 & -\Delta x \Delta y & -(\Delta y)^2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
+\frac{\alpha}{2\gamma_1} \begin{pmatrix}\n-1 & 0 & -1 & 0 & 2 & 0 \\
0 & -1 & 0 & -1 & 0 & 2 \\
-1 & 0 & -1 & 0 & 2 & 0 \\
0 & -1 & 0 & -1 & 0 & 2 \\
2\frac{\gamma_1}{\gamma_2} & 0 & 2\frac{\gamma_1}{\gamma_2} & 0 & -4\frac{\gamma_1}{\gamma_2} & 0 \\
0 & 2\frac{\gamma_1}{\gamma_2} & 0 & 2\frac{\gamma_1}{\gamma_2} & 0 & -4\frac{\gamma_1}{\gamma_2}\n\end{pmatrix}
$$
\nwhere $\Delta x = \tilde{x}_1 - \tilde{x}_2$ and $\Delta y = \tilde{y}_1 - \tilde{y}_2$,

[Model Reduction](#page-1-0) Results [Hookean Cell Systems of Two Cells and One c-Site](#page-10-0) [Several c-Sites, The c-Site reduction Theorems](#page-35-0)

[Conclusion and Future Work](#page-40-0)

[Regime 2: Within the Support of](#page-17-0) f

.

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ 「 글 」 90,09

The Stability of the equilibria

The eigenvalues of $\mathbf{D}f(\tilde{x})$ are

$$
0, 0, 0, -\alpha \left(\frac{1}{\gamma_1} + \frac{2}{\gamma_2}\right), -\alpha \left(\frac{1}{\gamma_1} + \frac{2}{\gamma_2}\right), \frac{1}{\gamma_1} \left(f'(r_0) - \frac{\alpha}{2}\right)
$$

The eigenvectors of the zero eigenvalues are

The eigenvectors of the zero eigenvalues are:

$$
\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \text{ and } \begin{pmatrix} \frac{y_1 - y_2}{x_1 - x_2} \\ -1 \\ -\frac{y_1 - y_2}{x_1 - x_2} \\ 1 \\ 0 \\ 0 \end{pmatrix}
$$

It should be noted that $\frac{y_1 - y_2}{y_1 - y_2} = \tan \theta$. (this is because θ from $x_1 - x_2$ the parameterization of $c(f)$ was defined to be the angle from the positive x -axis the solution was rotated counterclockwise)

The Stability of the equilibria

What does this mean?

 $c(f) = U_c$ (The center manifold and the set of equilibria of $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$ are the same.)

KOD KOD KED KED E DAG

The Stability of the equilibria

What does this mean?

 $c(f) = U_c$ (The center manifold and the set of equilibria of $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$ are the same.)

KID KADI KEIN KEN EL ONO

24/34

There is no unstable manifold. (Since all of the nonzero eigenvalues of $\mathbf{D}f(\tilde{x})$ are negative.)

The Stability of the equilibria

What does this mean?

 $c(f) = U_c$ (The center manifold and the set of equilibria of $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x})$ are the same.)

KID KADI KEIN KEN EL ONO

- There is no unstable manifold. (Since all of the nonzero eigenvalues of $\mathbf{D}f(\tilde{x})$ are negative.)
- All the equilibria are stable.

[Regime 2: Within the Support of](#page-17-0) f

Results [Hookean Cell Systems of Two Cells and One c-Site](#page-10-0) [Conclusion and Future Work](#page-40-0)

The solution to our system

$$
\begin{cases}\n\gamma_1 \dot{\mathbf{x}}_1 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_1 - \mathbf{x}_2}{||\mathbf{x}_1 - \mathbf{x}_2||} + \alpha(\mathbf{c} - \mathbf{x}_1) \\
\gamma_1 \dot{\mathbf{x}}_2 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_2 - \mathbf{x}_1}{||\mathbf{x}_1 - \mathbf{x}_2||} + \alpha(\mathbf{c} - \mathbf{x}_2) \\
\gamma_2 \dot{\mathbf{c}} = \alpha(\mathbf{x}_1 - \mathbf{c}) + \alpha(\mathbf{x}_2 - \mathbf{c}) \\
\mathbf{x}_1(0) = (0, 0), \quad \mathbf{x}_2(0) = (l, 0), \text{ and } \mathbf{c}(0) = (x_c(0), y_c(0)).\n\end{cases}
$$
\nLet $g(x_1, x_2, y_1, y_2) = f(||\mathbf{x}_1 - \mathbf{x}_2||)/||\mathbf{x}_1 - \mathbf{x}_2||$, and get\n
$$
\begin{cases}\n\gamma_1 \dot{x}_1 = g(x_1, x_2, y_1, y_2)(x_1 - x_2) + \alpha(x_c - x_1) \\
\gamma_1 \dot{y}_1 = g(x_1, x_2, y_1, y_2)(y_1 - y_2) + \alpha(y_c - y_1) \\
\gamma_1 \dot{x}_2 = g(x_1, x_2, y_1, y_2)(x_2 - x_1) + \alpha(x_c - x_2) \\
\gamma_1 \dot{y}_2 = g(x_1, x_2, y_1, y_2)(y_2 - y_1) + \alpha(y_c - y_1) \\
\gamma_2 \dot{x}_c = \alpha(x_1 - x_c) + \alpha(x_2 - x_c) \\
\gamma_2 \dot{y}_c = \alpha(y_1 - y_c) + \alpha(y_2 - y_c).\n\end{cases}
$$
\n
$$
\begin{cases}\n\gamma_2 \dot{x}_2 = \alpha(y_1 - y_c) + \alpha(y_2 - y_c) \\
\gamma_1 \dot{y}_2 = g(x_2, y_1, y_2) \\
\gamma_2 \dot{y}_2 = \alpha(y_1 - y_c) + \alpha(y_2 - y_c) \\
\gamma_2 \dot{y}_2 = \alpha(y_1 - y_c) + \alpha(y_2 - y_c) \\
\gamma_1 \dot{y}_2 = g(x_2, y_1, y_2)
$$

[Regime 2: Within the Support of](#page-17-0) f

The solution to our system

We make a shrewd guess: $y_1(t) = y_2(t) =: y(t)$ (This is possible since $y_1(0) = y_2(0) = 0$

Isolate the y-components and solve

$$
\begin{cases}\n\gamma_1 \dot{y}_1 = g(x_1, x_2, y_1, y_2)(y_1 - y_2) + \alpha(y_c - y_1) \\
\gamma_1 \dot{y}_2 = g(x_1, x_2, y_1, y_2)(y_2 - y_1) + \alpha(y_c - y_1) \\
\gamma_2 \dot{y}_c = \alpha(y_1 - y_c) + \alpha(y_2 - y_c) \\
y_1(0) = 0, y_2(0) = 0, y_c(0) = c_y.\n\end{cases}
$$

becomes

$$
\begin{cases}\n\gamma_1 \dot{y} = \alpha (y_c - y) \\
\gamma_2 \dot{y}_c = 2\alpha (y - y_c) \\
y(0) = 0, \ y_c(0) = c_y.\n\end{cases}
$$

This wins us $y_1(t)$, $y_2(t)$, and $y_c(t)$.

KID KADI KEIN KEN EL ONO

[Regime 2: Within the Support of](#page-17-0) f

The solution to our system

We then use the conservation of the center of drag to relate $x_1(t)$, $x_2(t)$, and $x_c(t)$, in

$$
\frac{\gamma_1 x_1(t) + \gamma_1 x_2(t) + \gamma_2 x_c(t)}{2\gamma_1 + \gamma_2} = \frac{x_c(0)\gamma_2 + l\gamma_1}{2\gamma_1 + \gamma_2}.
$$
 (1)

Plugging this into the $x_c(t)$ equation of the system (which is linear)

$$
\gamma_2 \dot{x}_c = \alpha (x_1 - x_c) + \alpha (x_2 - x_c),
$$

allows us to find $x_c(t)$ explicitly.

This gives a relation between $x_1(t)$ and $x_2(t)$ which can be used in conjunction with

$$
\gamma_1 \dot{x}_1 = g(x_1, x_2, y_1, y_2)(x_1 - x_2) + \alpha(x_c - x_1)
$$

to solve $x_1(t)$.

KO KARA KE KE KE BA SAGA 27/34

[Regime 2: Within the Support of](#page-17-0) f

[Hookean Cell Systems of Two Cells and One c-Site](#page-10-0) [Several c-Sites, The c-Site reduction Theorems](#page-35-0) [Conclusion and Future Work](#page-40-0)

The solution to our system

 \bullet $x_1(t)$ satisfies the differential equation:

Results

$$
\gamma_1 \dot{x}_1 = -f \left(2x_1 - l - \frac{2\gamma_2 x_c(0) - l\gamma_2}{2\gamma_1 + \gamma_2} \left(1 - e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t} \right) \right) + \alpha \left(\frac{x_c(0)\gamma_2 + l\gamma_1}{2\gamma_1 + \gamma_2} + \frac{2x_c(0)\gamma_1 - l\gamma_1}{2\gamma_1 + \gamma_2} e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t} - x_1 \right)
$$

with
$$
x_1(0) = 0
$$
.
\n• $x_2 = l - x_1 + \frac{\gamma_2}{\gamma_1} (x_c(0) - x_c(t))$.
\n• $y_1(t) = \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2} - \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2} e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}$
\n• $y_2(t) = \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2} - \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2} e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}$
\n• $x_c(t) = \frac{x_c(0)\gamma_2 + l\gamma_1}{2\gamma_1 + \gamma_2} + \frac{2x_c(0)\gamma_1 - l\gamma_1}{2\gamma_1 + \gamma_2} e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}$
\n• $y_c(t) = \frac{y_c(0)\gamma_2}{2\gamma_1 + \gamma_2} + \frac{2y_c(0)\gamma_1}{2\gamma_1 + \gamma_2} e^{-\alpha(\gamma_1^{-1} + 2\gamma_2^{-1})t}$

 $\sqrt{ }$

 $\begin{array}{c} \hline \end{array}$

[C-site Reduction Theorem for Two Cells](#page-35-0)

C-site Reduction Theorem for Two Cells

The theorem states that the several c-site problem:

$$
\gamma_1 \dot{\mathbf{x}}_1 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_1 - \mathbf{x}_2}{\|\mathbf{x}_1 - \mathbf{x}_2\|} + \sum_{i=1}^m \alpha(\mathbf{c}_i - \mathbf{x}_1)
$$

\n
$$
\gamma_1 \dot{\mathbf{x}}_2 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_2 - \mathbf{x}_1}{\|\mathbf{x}_1 - \mathbf{x}_2\|} + \sum_{i=1}^m \alpha(\mathbf{c}_i - \mathbf{x}_2)
$$

\n
$$
\gamma_2 \dot{\mathbf{c}}_1 = \alpha(\mathbf{x}_1 - \mathbf{c}_1) + \alpha(\mathbf{x}_2 - \mathbf{c}_1)
$$

\n
$$
\vdots
$$

\n
$$
\gamma_2 \dot{\mathbf{c}}_m = \alpha(\mathbf{x}_1 - \mathbf{c}_m) + \alpha(\mathbf{x}_2 - \mathbf{c}_m)
$$

$$
\begin{cases}\n\gamma_2 \mathbf{c}_1 = \alpha(\mathbf{x}_1 - \mathbf{c}_1) + \alpha(\mathbf{x}_2 - \mathbf{c}_1) \\
\vdots \\
\gamma_2 \mathbf{c}_m = \alpha(\mathbf{x}_1 - \mathbf{c}_m) + \alpha(\mathbf{x}_2 - \mathbf{c}_m) \\
\mathbf{x}(0) = ((0, 0), (l, 0), \mathbf{c}_1(0), \mathbf{c}_2(0), \dots, \mathbf{c}_m(0))^T\n\end{cases}
$$

prescribes the same cell movement as the reduced cell system:

$$
\begin{cases}\n\gamma_1 \dot{\mathbf{x}}_1 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_1 - \mathbf{x}_2}{\|\mathbf{x}_1 - \mathbf{x}_2\|} + \sum_{i=1}^m \alpha(\mathbf{c}_i - \mathbf{x}_1) \\
\gamma_1 \dot{\mathbf{x}}_2 = f(||\mathbf{x}_1 - \mathbf{x}_2||) \frac{\mathbf{x}_2 - \mathbf{x}_1}{\|\mathbf{x}_1 - \mathbf{x}_2\|} + \sum_{i=1}^m \alpha(\mathbf{c}_i - \mathbf{x}_2) \\
m\gamma_2 \dot{\mathbf{c}} = m\alpha(\mathbf{x}_1 - \mathbf{c}) + m\alpha(\mathbf{x}_2 - \mathbf{c}) \\
\mathbf{x}(0) = \left((0, 0), (l, 0), \frac{1}{m} \sum_{k=1}^m \mathbf{c}_k(0) \right)^T \\
\mathbf{x} = \mathbf{c}_k \mathbf{x} + \mathbf{c}_k
$$

[C-site Reduction Theorem for Two Cells](#page-35-0) [General C-site Reduction Theorem](#page-38-0)

C-site Reduction Theorem for Two Cells

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q

[C-site Reduction Theorem for Two Cells](#page-35-0)

C-site Reduction Theorem for Two Cells

Sketch of proof:

- Let $\mathbf{x}(t) = (\mathbf{x}_1(t), \mathbf{x}_2(t), \mathbf{c}_1, \dots, \mathbf{c}_m)$ be the unique solution to the several c-site problem.
- Verify that

$$
\tilde{\boldsymbol{x}}(t) = \left(\mathbf{x}_1(t), \mathbf{x}_2(t), \frac{1}{m} \sum_{k=1}^m \mathbf{c}_k(t)\right)
$$

is the unique solution to the reduced c-site problem, with the appropriate parameters ($m\alpha$ for spring constants, $m\gamma$ for drag coefficient)

[C-site Reduction Theorem for Two Cells](#page-35-0) [General C-site Reduction Theorem](#page-38-0)

General C-site Reduction Theorem

[C-site Reduction Theorem for Two Cells](#page-35-0) [General C-site Reduction Theorem](#page-38-0)

General C-site Reduction Theorem

Conclusion and Future Work

Some questions of interest to us are:

- \bullet What are the equilibria of a Hookean cell system of n cells?
- ² What is the behavior of the system at that equilibria?
- ³ What is the next step in modifying the model to make it a closer approximation of the motion of a slug?
- ⁴ How can stochastics be introduced to such a frame work?

KOD KOD KED KED E DAG