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Noise reduction
Data-driven model reduction

McBride (Applied Mathematics@UA) CKMS Oct 27, 2021 2 / 55



Outline

1 Background
Signals
Systems

2 Wiener Filter

3 Kalman Filtering

4 Spectral Factorization

5 Numerical Implementation of Wiener Filter
DFT

6 Results

7 Conclusions

McBride (Applied Mathematics@UA) CKMS Oct 27, 2021 3 / 55



Signals
Some terms and concepts

Stochastic process: A family of random variables indexed by an index
set (discrete or continuous). E.g. X : Ω × R→ Cd or X : Ω × Z→ Cd

Timeseries: A realization of a stochastic process (usually indexed by
time). In this talk this is indexed over a finite set. E.g.
x : {1, 2, . . . ,N} → Cd

Signal: A stochastic process.

Wide sense stationary (WSS) stochastic process: A stochastic process
satisfying the following conditions:

EXn = 𝜇 (no dependence on t)
E[(Xn − 𝜇) (Xn − 𝜇)∗] = f (n − m) (depends only on difference t − s)

Where the asterisks ∗ denote the conjugate transpose.
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Signals
Some terms and concepts

Covariance sequence: Given a WSS stochastic process X = {Xn} it is
the (doubly infinite) sequence RX (n) given by

RX (n,m) = E[(Xn − 𝜇) (Xm − 𝜇)∗] = RX (n − m)

Power spectrum: The Fourier series of the covariance sequence

SX (𝜔) =
∞∑︁

k=−∞
RX (k)e−ik𝜔

z-spectrum: The z-series of the covariance sequence

S̄X (z) =
∞∑︁

k=−∞
RX (k)z−k
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Signals
Some terms and concepts

Jointly wide-sense stationary stochastic processes: Two stochastic
processes satisfying the following conditions:

EXn = 𝜇X , EYn = 𝜇Y and E[(Xn − 𝜇X) (Yn − 𝜇Y )∗] = f (n − m)
Cross covariance sequence: Given two (jointly) WSS stochastic process
X = {Xn},Y = {Yn} it is the (doubly infinite) sequence RXY (n) given by

RXY (n,m) = E[(Xn − 𝜇X) (Ym − 𝜇Y )∗] = RXY (n − m)
Cross spectrum: The Fourier series of the cross covariance sequence

SXY (𝜔) =
∞∑︁

k=−∞
RXY (k)e−ik𝜔

z-cross spectrum: The z-series of the cross covariance sequence

S̄XY (z) =
∞∑︁

k=−∞
RXY (k)z−k
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Signals
Example: White noise

Let Xn ∼ N(𝜇, 𝜎2) i.i.d
This is WSS since

EXn = 𝜇

E[(Xn − 𝜇) (Xm − 𝜇)∗] = 𝜎2𝛿n,m = 𝜎2𝛿(n − m)

The autocovariance sequence is

RX (n) = 𝜎2𝛿(n) for n ∈ Z

The power spectrum and z-spectrum is therefore given by

SX (𝜔) =
∞∑︁

k=−∞
𝜎2𝛿(k)z−k = 𝜎2 = S̄X (z)

McBride (Applied Mathematics@UA) CKMS Oct 27, 2021 7 / 55



Systems
More terms and concepts

Standard state-space model of a system: A model of the following form:{
Xi+1 = FiXi + Giui

Yi = HiXi + vi

where Fi ∈ Cn×n, Gi ∈ Cn×m, and Hi ∈ Cp×n are known matrices, and u = {ui},
v = {vi}, and X0 are variables with the following property

E
©­«
X0
ui
vi

ª®¬
©­­­«
X0
uj
vj
1

ª®®®¬
∗

=
©­«
Π0 0 0 0
0 Qi𝛿ij Si𝛿ij 0
0 S∗i 𝛿ij Ri𝛿ij 0

ª®¬
Y is the output (or observations).
X is the state variable.
u is the process (or plant) noise
v is the measurement noise.
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Systems
More terms and concepts

Time-invariant state-space model: A model of the following form:{
Xi+1 = FXi + Gui

Yi = HXi + vi

where F ∈ Cn×n, G ∈ Cn×m, and H ∈ Cp×n are known matrices, and u = {ui},
v = {vi}, and X0 are variables with the following property

E
©­«
X0
ui
vi

ª®¬
©­­­«
X0
uj
vj
1

ª®®®¬
∗

=
©­«
Π0 0 0 0
0 Q𝛿ij S𝛿ij 0
0 S∗𝛿ij R𝛿ij 0

ª®¬
Observe Fi = F, Hi = H, Gi = G, Qi = Q, Ri = R, and Si = S
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Systems
More terms and concepts

Linear time-invariant system:
▶ (Linear)

L(𝛼u + 𝛽v) = 𝛼Lu + 𝛽Lv for all 𝛼, 𝛽 ∈ C
▶ (Time invariant) Let S be the shift operator (Su)n = un+1, then L is time
invariant if

LSu = SLu

These can be represented as a convolution

(Lu)n =

∞∑︁
k=−∞

lkun−k
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Example: Is a time-invariant state-space model a linear
time-invariant system?

The inputs are u, v and the outputs are X, Y , let L(u, v) = (X, Y)
(Time-invariant) Does L(Su, Sv) = (SX, SY)?{

X′
i+1 = FX′

i + Gui+1
Y ′

i = HX′
i + vi+1

⇒
{

X′
j = FX′

j−1 + Guj

Y ′
j−1 = HX′

j−1 + vj

So, Xj = X′
j−1 = (S−1X′)j and SX = X′. Same for Y ′.
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Example: Is a time-invariant state-space model a linear
time-invariant system?

The inputs are u, v and the outputs are X, Y , let L(u, v) = (X, Y)
(Linear) Let L(u′, v′) = (X′, Y ′){

𝛼Xi+1 + X′
i+1 = 𝛼FXi + FX′

i + 𝛼Gui + Gu′
i

𝛼Yi + Y ′
i = 𝛼HXi + HX′

i + 𝛼vi+1 + v′i
⇒{

(𝛼X + X′)i+1 = F(𝛼X + X′)i + G(𝛼u + u′)i
(𝛼Y + Y ′)i = H(𝛼X + X′)i + (𝛼v + v′)i

So, observe that L(𝛼u + u′, 𝛼v + v′) = (𝛼X + X′, 𝛼Y + Y ′)
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Systems
More terms and concepts

Impulse response of a (LTI) system: The output of the system when the
impulse signal 𝛿 = (. . . , 0, 1, 0, . . . ) is the input.
▶ Example: If the system can be written as a convolution with with some
element l = {lk}, the impulse response recovers that element.

L𝛿n =

∞∑︁
k=−∞

𝛿kln−k = ln

z-series: Given a sequence a (bilaterally infinite) the z-series is the
complex function

A(z) = Z{a} =
∞∑︁

k=−∞
akz−k.

Transfer function of an LTI system: The z-series of the impulse
response of a system

L(z) =
∞∑︁

k=−∞
lkz−k.
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Systems
More terms and concepts

Causal: A LTI system is causal if it’s impulse response is causal which
means hk = 0 for k < 0.

BIBO Stability: A LTI system is stable if given a bounded input the
output of the system is bounded.

Inverse: The inverse of an LTI system maps the output to the input.

Minimum-phase: A linear time-invariant system is minimum-phase if it
and it’s inverse are both causal and stable.
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Systems
More terms and concepts

A few facts: Suppose an LTI system L has a rational transfer function H(z),
then

L is BIBO stable if its impulse response hk is absolutely summable
(think of Hölder 1,∞). This means H(z) converges on the unit circle.

L is causal if the poles of H(z) lie within the unit circle.

The transfer function of L−1 is [H(z)]−1.

L is minimum phase if the poles and zeros of H(z) lie (strictly) within
the unit circle.

If L is an LTI system and X is WSS, then LX is stationary and jointly
stationary with X.
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Example: MA(q)

Consider system R given by R(u) = v where

vn = un + r1un−1 + · · · + rqun−q =

q∑︁
i=0

riun−i = (r ★ u)n

What do we know about R
▶ LTI
▶ FIR (finite impulse response), only q + 1 taps.

r = (. . . , 0, 1 , r1, r2, . . . , rq, 0, . . . )

▶ Transfer function:

R(z) =
∞∑︁

k=−∞
rkz−k =

q∑︁
k=0

rkz−k

▶ Causal and stable
▶ Minimum phase? (depends)
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Example: MA(q)

Recall Xn ∼ N(𝜇, 𝜎2) i.i.d

RX Y

Yn = Xn + r1Xn−1 + · · · + rqXn−q

What do we know about Y ,
▶ Bounded
▶ WSS?
▶ Covariance sequence:

RX (n) = 𝜎2
q∑︁

i=0
rir∗i−n for n ∈ Z

(Observe RX (n) = 0 for |n| > q)
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Example: MA(q)

Recall Xn ∼ N(𝜇, 𝜎2) i.i.d

RX Y

Yn = Xn + r1Xn−1 + · · · + rqXn−q

What do we know about Y ,
▶ z-spectrum

S̄Y (z) = S̄r★X (z) = R(z)S̄X (z)R∗ (z−∗) =
( q∑︁

k=0
rkz−k

)
𝜎2

( q∑︁
k=0

r∗kzk

)
▶ Power spectrum,

SY (𝜔) = S̄Y (ei𝜔) = 𝜎2

����� q∑︁
k=0

rke−i𝜔k

�����2
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Systems
One last term

Canonical Spectral factorization: Given a z-spectrum Sx(z), for which
all SX and log |Sx | are integrate on the unit circle, it can be factored as:

SX (z) = L(z)ReL∗(z−∗)

such that
▶ Re > 0,
▶ lim

z→∞
L(z) = I, and

▶ L(z) and L(z)−1 are analytic in |z| > 1.

Canonical Spectral factorization of Laurent Polynomials:
Furthermore, if SX is a Laurent Polynomial, that is,

SX (z) =
m∑︁

k=−m
rkz−k, (rk = r∗−k), then L(z) = I +

m∑︁
k=1

lkz−k
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Wiener Filter

Given two (jointly)WSS processes Y ,X, the Wiener filter provides the optimal
linear estimator of Y given X, that is,

E∥Yn − (X ★ h)n∥2 = minimum in h

Once constructed the Wiener filter is an LTI system.

X Winer filter: (h★ ·) Ŷ

h is the Wiener filter
Y is the signal,
X is the predictors.
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Wiener Filter

So,

Y ★

X

Ŷ
h

Or rather,

SYX ★

SX
X

Ŷ
h
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Wiener Filter
How it works (noncausal)

Assume we have it (h not necessarily causal).
Since, it is a linear least squares estimate,

0 = E
[
(yn − ŷn) (xm)

]
= E

[
(yn − (h★ x)n) (xm)∗

]
This implies

Eynx∗m = E
∞∑︁

k=−∞
hkxn−kx∗m =

∞∑︁
k=−∞

hkExn−kx∗m

or rather (with relabeling n − m ↦→ n)

Ryx(n) =
∞∑︁

k=−∞
hkRx(n − k)

The form of RHS suggest use of the z-transform.
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Wiener Filter
How it works (noncausal)

Applying the z-transform to both sides gives

Syx(z) = H(z)Sx(z)

where

H(z) = Z{hn} =
∞∑︁

n=−∞
hnz−n

So,
H(z) = Syx(z)S−1x (z)

we then apply the inverse z-transform to recover h

hn =
1
2𝜋i

∫
C

Syx(z)S−1x (z)zn−1 dz
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Wiener Filter
How it works (causal)

If we require that h is causal this is more difficult. Then

0 = E
[
(yn − ŷn) (xm)

]
= E

[
(yn − (h★ x)n) (xm)∗

]
only for m ≤ n

This implies

Eynx∗m = E
∞∑︁

k=−∞
hkxn−kx∗m =

∞∑︁
k=−∞

hkExn−kx∗m only for m ≤ n

or rather (with relabeling n − m ↦→ n)

Ryx(n) =
∞∑︁

k=−∞
hkRx(n − k) only for n ≥ 0

The form of RHS suggest use of the z-transform. But we can’t!
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Wiener Filter
How it works (causal)

However observe that for

gn = Ryx(n) −
∞∑︁

k=−∞
hkRx(n − k)

g is strictly anti-casual since gn = 0 when n ≥ 0. Now apply the z-transform to
both sides. We get

G(z) = Syx(z) − H(z)Sx(z)
Now apply the spectral factorization to Sx(z) And proceed as follows

G(z) = Syx(z) − H(z)S−x (z)S+x (z)

and observe when we apply the inverse

G(z)S+−1x (z)︸         ︷︷         ︸
strictly anti−causal

= Syx(z)S+−1x (z)︸           ︷︷           ︸
mixed

−H(z)S−x (z)︸      ︷︷      ︸
causal
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Wiener Filter
How it works (causal)

And so, as a necessary condition,

H(z) =
{
Syx(z)S+−1x (z)

}
+

S−−1x (z)

How to implement it and test it?

hk =
1
2𝜋i

∫
C

H(z)zn−1 dz

Put Ŷ = h★X,
Plot Y and Ŷ
Plot RY−Ŷ ,X over some interval containing zero.
Global statistic: mean square error (MSE)
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Wiener Filter
Example

X is an AR(10) process, time series length 10,000.
Y = f ★X is X filtered by a causal, stable 10-tap, filter f .
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Wiener filter to Kalman filter

Commonly there is a statespace structure,{
Xi+1 = FXi + Gui

Yi = HXi + vi

Kalman extended developed statespace estimation for the time variant
case {

Xi+1 = FiXi + Giui
Yi = HiXi + vi

The so-called innovations process,
▶ ei = Yi − Ŷi |i−1 = HiX̂i |i−1 where Ŷi |i−1 and X̂i |i−1 are the l.l.s.e. of Yi and

Xi (respectively) given Yi−1, . . . , Y1
▶ this process is white.
▶ It can be used to recursively produce state prediction.
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Kalman Filtering

The Innovations Recursions [1, p. 317]
Consider the standard statespace model{

Xi+1 = FiXi + Giui
Yi = HiXi + vi

i ≥ 0

The innovations process of Y can be recursively computed using the equations

ei = Yi − HiX̂i, X̂0 = 0, e0 = Y0,
X̂i+1 = FiX̂i + Kp,iei, i ≥ 0,

where Kp,i = (FiPiH∗
i + GiSi)R−1

e,i , Re,i = Ri + HiPiH∗
i , and

Pi+1 = FiPiF∗
i + GiQiG∗

i − Kp,iRe,iKp,i, P0 = Π0

Here, Pi = EX̃iX̃∗
i where X̃i = Xi − X̂i. When m ≪ n , p ≪ n to go from ei to

ei+1 requires O(n3) operations.
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Kalman Filtering

The Innovations Recursions [1, p. 317]
Consider the standard statespace model{

Xi+1 = FiXi + Giui
Yi = HiXi + vi

i ≥ 0

The innovations process of Y can be recursively computed using the equations

X̂i+1 = FiX̂i + Kp,iei, X̂0 = 0, e0 = Y0,
Yi = HiX̂i + ei, i ≥ 0,

where Kp,i = (FiPiH∗
i + GiSi)R−1

e,i , Re,i = Ri + HiPiH∗
i , and

Pi+1 = FiPiF∗
i + GiQiG∗

i − Kp,iRe,iK∗
p,i, P0 = Π0

Here, Pi = EX̃iX̃∗
i where X̃i = Xi − X̂i. When m ≪ n , p ≪ n to go from ei to

Eei+1 requires O(n3) operations.
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Kalman Filtering

Knowing Kp,i and Re,i gives a causal and causally invertable system
L : e ↦→ Y given by

X̂i+1 = FiX̂i + Kp,iei, X̂0 = 0
Yi = HiX̂i + ei

(This is called an innovations model)

The inverse L−1 : Y ↦→ e is given by

X̂i+1 = (Fi − Kp,iHi)X̂i + Kp,iYi, X̂0 = 0
ei = −HiX̂i + Yi

L is an example of a modeling filter

L−1 is an example of a whitening filter
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Kalman Filtering by Chadrasekhar-Kailath-Morf-Sidhu
(CKMS)

Kailath, Morf and Sidhu (1973) observed that
though Pi is full rank 𝛿Pi := Pi+1 − Pi can have low rank

So write,
𝛿Pi = LiMiL∗

i

It was shown that if 𝛿P0 = L0M0L∗
0 with M0

▶ hermitian
▶ nonsingular
▶ size 𝛼 × 𝛼

, then for i > 0, 𝛿Pi = LiMiL∗
i with Mi

▶ hermitian
▶ nonsingular
▶ size 𝛼 × 𝛼
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Kalman Filtering CKMS)

The Fast (CKMS) Kalman Recursions [1, p. 409]
The Kp,i and Re,i from the Kalman recursion above can be recursively
computed by the following set of coupled recursions, for i ≥ 0

Kp,i+1 = Kp,i − FLiR−1
r,i L

∗
i H

∗

Li+1 = FLi − Kp,iR−1
e,iHLi

Re,i+1 = Re,i − HLiR−1
r,i L

∗
i H

∗

Rr,i+1 = Rr,i − L∗
i H

∗R−1
e,iHLi

The recursion is initialized as follows: Kp,0 = FΠ0H∗ + GS and
Re,0 = R + HΠ0H∗. Then factor get L0 and Rr,0

𝛿P0 := FΠ0F∗ + GQG∗ − Kp,0R−1
e,0K

∗
p,0 − Π0 =: −L0R−1

r,0L
∗
0

where L0 is n × 𝛼 and Rr,0 is 𝛼 × 𝛼, nonsingular and Hermitian.
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We can get away with 𝛼 = 1!

This is a result of stationary,
There exists a Π̄ such that

Π̄ = FΠ̄F ∗ +GQG∗

If we pick Π0 = Π̄ then

𝛿P0 = FΠ0F∗ + GQG∗ − Kp,0R−1
e,0K

∗
p,0 −Π0 = −Kp,0R−1

e,0K
∗
p,0 = −L0R−1

r,0L
∗
0

So, we can initialize
▶ L0 = K0 = FΠ0H∗ + GS
▶ Rr,0 = Re,0 = R + HΠ̄H∗
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Spectral Factorization (Numerical)

Most Numerical algorithms assume S(z) is rational and has the form of a
Laurent Polynomial (noted above) (this is what we assume here) Algorithms
that use Toeplitz matrices.

Bauer
Schur
Levinson-Durbin

Algorithms that use state-space formulations.
Riccati Equation
Kalman Filter
Chadrasekhar-Kailath-Morf-Sidhu (CKMS)

Sayed, Ali H., and Thomas Kailath. "A survey of spectral factorization
methods." Numerical linear algebra with applications 8.6-7 (2001): 467-496.
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Spectral Factorization
By Kalman Filter

Given SY (z), Yn ∈ Cd for n > −∞, (stationary discrete-time stochastic process)

SY (z) =
∞∑︁

n=−∞
RY (n)z−n,

Now, if the covariance decays fast enough truncate

S̃Y (z) =
m∑︁

n=−m
RY (n)z−n.

It is possible to construct Ỹn (finite state-spaces process) with

SỸ (z) = S̃Y (z),
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Spectral Factorization
By Kalman Filter {

Xi+1 = FXi + Gvi
Ỹi = HXi + ui

provided that

F =

©­­­­­­«

0
I 0

I 0
. . .

. . .

I 0

ª®®®®®®¬
∈ Cmd×md

H =
(
0 . . . 0 I

)
∈ Cd×md

E
(
vi ui

) (
v∗j
u∗j

)
=

(
R𝛿ij S𝛿ij
S∗𝛿ij Q𝛿ij

)

Π = FΠF∗ + GQG∗

GS = N − FΠH∗

R = RY (0) − HΠH∗

Π = cov(Xi,Xi) = EXiX∗
i

(
∈ Cmd×md

)
N =

©­­­­«
RY (m)

RY (m − 1)
...

RY (1)

ª®®®®¬
(
∈ Cmd×d

)
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Spectral Factorization
By Kalman Filter

SỸ (z) =
m∑︁

n=−m
RY (n)z−n = S̃Y (z)

Original model for Ỹ {
Xi+1 = FXi + Gvi

Ỹi = HXi + ui

Innovations model (modeling filter) for Ỹ{
X̂i+1 = FX̂i + Kiei, X̂0 = 0

Ỹi = HX̂i + ei

where Eeie∗j = Re,i𝛿ij,

Ki = (N − FΣiH∗)R−1
e,i , Re,i = RY [0] − HΣiH∗, and

Σi+1 = FΣiF∗ + KiRe,iK∗
i Σi = EX̂iX̂∗

i
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Spectral Factorization
By Kalman Filter

Will Ki, Re,i converge?
Yes, this is a consequence of F being stable. Let K = limi Ki,
Re = limi Re,i, {

X̂i+1 = FX̂i + Kei
Ỹi = HX̂i + ei, Eeie∗j = Re𝛿ij

In our context this system may be represented as a convolution since

Ỹi =
(
L(e)

)
i = ei +

m∑︁
j=1

K (j)ei−1−m+j = (ℓ ∗ e)i

where
ℓ = (I,K (m) ,K (m−1) , . . . ,K (1) )

So the modeling filter is

hmod = (R1/2e ,K (m)R1/2e ,K (m−1)R1/2e , . . . ,K (1)R1/2e )
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Spectral Factorization
By Kalman Filter

Ỹ is an approximating MA(m).
Observe that

SỸ (z) = Sℓ∗e(z) = L(z)Se(z)L∗(z−∗) = L(z)RL∗(z−∗)

where L is the z-transform of ℓ.

L(z) =
∞∑︁

k=1
ℓkz−k+1

And so,
SY (z) ≈ S̃Y (z) = SỸ (z) = L(z)RL∗(z−∗)

provides a spectral factorization.
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Numerical Wiener filtering

Expensive Wiener filter solvers:
Backslash (QR)
Direct (numerical) optimization

Cheaper Wiener filter solvers
Wiener-Hopf with CKMS
Kaczmarz
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Numerical Wiener filtering
Backslash (QR) or any least squares solver

In the presents of data, N samples. Pick M ≪ N, we seek hn,
n = 0, 1, 2, . . . ,M − 1 so that

▶ Ŷn =

M−1∑︁
k=0

Xn−khk for n > M

▶ E∥Yn − Ŷn∥2 ≈ ∥Y − Ŷ ∥22 = minimum over all such {hn}

This is a regression problem

Yn ∼ Xn,Xn−1, . . . ,Xn−M+1

Consider the design matrix,

X =
[
xM+1:N

(
S−1X

)
M+1:N · · ·

(
S−MX

)
M+1:N

]
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Numerical Wiener filtering
Backslash (QR) or any least squares solver

Let

X =
[
XM+1:N

(
S−1X

)
M+1:N · · ·

(
S−MX

)
M+1:N

]
=

[
XM+1:N XM:N−1 · · · X1:N−M

]
=


XM+1 XM XM−1 · · · X1
XM+2 XM+1 XM · · · X2
...

...
...

. . .
...

XN XN−1 XN−2 · · · XN−M


∈ C(M+1)×(N−M) ,

and

Y = YM+1:N =


YM+1
YM+1
...

YN


Then Y ≈ Xh = ŶM+1:N

Where h = h1:M
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Numerical Wiener filtering
Backslash (QR) or any least squares solver

So we have the least square problem

Y ≈ Xh

QR
SVD
randomized algorithms

(May benefit from regularization)

McBride (Applied Mathematics@UA) CKMS Oct 27, 2021 44 / 55



Numerical Wiener filtering
Direct Wiener-Hopf technique

Algorithm (three steps)
1. Build spectral factors
1.1 Approximate autocovariance of X (predictors)
1.2 Feed this into CKMS

2. Approximate cross spectrum
3. Compute H using

H(z) =
{
Syx(z)L−∗(z−∗)

}
+ L−1(z)

3.1 Divide spectral factor
3.2 Take causal part
3.3 Divide
3.4 Extract filter

McBride (Applied Mathematics@UA) CKMS Oct 27, 2021 45 / 55



Numerical Wiener filtering
A word about DFT

DFT: I use fft from FFTW.jl (a Julia wrapper for the FFTW library
written in C).
Here is what it does:

vk = fft(u)k =
N∑︁

j=1
uje−

2𝜋i
N (j−1) (k−1)

uj = ifft(v)j =
1
N

N∑︁
k=1

vke
2𝜋i
N (k−1) (j−1)

Here is why I use it so much:
▶ Given S(z) = ∑N

j=1 cjz−(j−1) (= Z{c})
▶ evaluated at zk = e

2𝜋i
N (k−1) for k = 1, . . . ,N (N equally-spaced, unit-circle

points)
▶ use fft

S(zk) =
N∑︁

j=1
cje−

2𝜋i
N (j−1) (k−1) = fft(c)k .
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Numerical Wiener filtering
Step 1: Build Spectral factors

Compute smoothed autocovariance sequence of predictors:

For predictors X =

(
X (i)

n ; i = 1, 2, . . . , 𝜈, n = 1, 2, . . . ,N
)
∈ C𝜈×N

▶ Ci,j,k =



N−k∑︁
n=1

X (i)
n+k

(
X (j)

n

)∗
k ≥ 0

N∑︁
n=1−k

X (i)
n+k

(
X (j)

n

)∗
k < 0

k = −P,−P + 1, . . . ,P

▶ Ai,j,k = Λk ·
1
2

(
Ci,j,k + C∗

i,j,−k

)
k = 0, 1, . . . ,P

where Λk is the (Parzen) smoothing function

Λk =


1 − 6

(
k
P

)2
+ 6

(
|k |
P

)3
, |k| ≤ P/2

2
(
1 − |k |

P

)3
, P/2 < |k| ≤ P

0, |k| > P
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Numerical Wiener filtering
Step 1: Build Spectral factors

Feed into CKMS for spectral factorization:
▶ CMKS : C𝜈×𝜈×(P+1) → C𝜈×𝜈×(P+1)

CKMS(A) = l

Form Spectral factors on unit circle grid. zk = e
2𝜋i
Nex (k−1) for k = 1, . . . ,Nex

▶ lk = l:,:,k, and lk = 0𝜈×𝜈 for P < k ≤ Nex

▶ L(z) =
Nex∑︁
k=1

lkz−k

▶ L(zk) = Lk, L = (Lk; k = 0, 1, . . . ,Nex)
then

L = fft(l) taken only in third dimension

Right spectral factor L′ = (L′
k; k = 0, 1, . . . ,Nex)
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Numerical Wiener filtering
Step 2: Approximate cross spectrum

Compute smoothed cross covariance sequence of signal with predictors:

Now for Y =

(
Y (i)

n ; i = 1, 2, . . . , d, n = 1, 2, . . . ,N
)
∈ Cd×N

▶ Ci,j,k =



N−k∑︁
n=1

Y (i)
n+k

(
X (j)

n

)∗
k ≥ 0

N∑︁
n=1−k

Y (i)
n+k

(
X (j)

n

)∗
k < 0

k = −P,−P + 1, . . . ,P

▶ Ai,j,k = Λ |k | · Ci,j,k k = −P,−P + 1, . . . ,P
Form Cross spectrum
▶ Pad: Ai,j,k = 0d×𝜈 for P < |k| ≤ Nex/21
▶ Evaluate on unit circle

S = fft(A) taken only in third dimension

1it is a little more complicated than this
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Numerical Wiener filtering
Step 3: Compute H

Divide spectral factor:
▶ K ∈ Cd×𝜈×Nex

▶ Kk = Sk (L′
k)

−1 for k = 0, 1, . . . ,Nex

Take causal part of K
▶ K̃ = ifft(K)
▶ zeros negative lags of K̃
▶ K+ = ifft(K̃)

Divide again
▶ Hk = K+k (Lk)−1 for k = 0, 1, . . . ,Nex

Extract filter
▶ h̃ = ifft(H)
▶ h = (h̃k ∈ Cd×𝜈; k = 0, 1, . . . ,M − 1)

McBride (Applied Mathematics@UA) CKMS Oct 27, 2021 50 / 55



Numerical Wiener filtering using CKMS
Overview

Choices
P - number of autocovariance terms considered.

Λ - windowing function.

Nex - size of grid on unit circle.

M - number of taps in Wiener filter.
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Example 1: AR(2) Predictors

X is an AR(2) process, time series length 10,000.
(zeros: −0.767,−0.276)
Y = f ★X is X filtered by a causal, stable 10-tap, filter f .
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Example 2: ARMA(5,5) Predictors

X is an ARMA(5, 5) process, time series length 10,000.
(zeros: 0.660198, 0.310362, -0.27755, -0.227891, -0.0424978;
poles: -0.444798, -0.854724, -0.779101, -0.0154544, 0.794821)
Y = f ★X is X filtered by a causal, stable 10-tap, filter f .
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Example 3: VAR(2) Predictors

X is an VAR(2) process, time series length 10,000.
(Poles: 0.231959, -0.896785; 0.168827, -0.889844
Y = f ★X is X filtered by a causal, stable 10-tap, filter f .
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Thank you!

Ali H Sayed and Thomas Kailath.
A survey of spectral factorization methods.
Numerical linear algebra with applications, 8(6-7):467–496, 2001.
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