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Introduction

In the analysis of chaotic and/or spectral time series, estimating
the power spectra is often a first step. Accurate spectral estimation
across a range of scales is often required for, e.g., prediction and
smoothing. However, for time series with multiple timescales, slow
decay of correlations, or when the range of the power spectrum is
large, as often occurs in chaotic dynamical systems, this can be dif-
ficult. Here, we compare a number of spectral estimators in current
use on time series generated by stochastic and chaotic time series.
We also propose a general variance reduction technique, based on
the method of control variates, and test its performance.

Background

Spectral Estimation methods
We discuss two families of spectral estimators.
• Bartlett-Parzen (BP). This family improves on the

periodogram estimate, which for a time series
X = (Xn, n = 1, . . . , N) uses the discrete Fourier transform F
and is |F(X)|2/N . It does so by applying a window function
either by point-wise multiplication with the estimated
autocovariance ĈX(n) or (equivalently) convolution with the
periodogram. The variance of the periodogram estimate does
not decrease as N gets large. Windowing reduces the variance so
that it vanishes with large N . The many choices of window
functions are well studied (see, e.g. [Pri81]). We use the Parzen
window, pictured in Figure 1, and a truncation parameter L
that depends on the estimated autocorrelation time τ of the
process (L ≈ 10τ ). This spectral estimate for the data X is

ŜParz
X (ω) =

L∑
n=−L

λParz
L (n) · ĈX(n)e−2πiωn/N

where

λParz
L (n) =


1 − 6(n/L)2 + 6(|n|/L)3, |n| ≤ L/2,

2(1 − |n|/L)3, L/2 ≤ |n| ≤ L,

0, |n| > L.

Figure 1: Parzen window for L = 10

• Maximal Entropy Spectral Analysis (MESA). This
method, developed by Burg [Bur75], fits an autoregressive
model of order p (AR(p)) to the data. A lattice of AR
coefficients ap = (a0,p, a1,p, . . . , ap,p) together with the error
variance σ2

p are constructed iteratively as p increases from 1 to
pmax (user specified). At each step coefficients and error variance
are found that minimize the sum of the squares of the forward
and backward prediction errors. From this lattice an optimal
model order p is selected [MSDP21] and the spectral estimate
becomes

ŜBurg
X (ω) =

σ2
p

|A(ω)|2
where A(ω) =

p∑
k=0

ak,pe
−ikω.

Background (continued)

Spectral Factorization, modeling and whitening
Whitening a time series, i.e. passing it through a filter to get a white
noise process is a common step in optimal prediction, filtering, and
smoothing.
Since the power spectrum SX(ω) of some process X is positive-semi-
definite, we can write S(ω) = L(ω)L∗(ω). If L(ω) is the frequency
response to some linear time-invariant filter ℓ = (. . . , ℓ−1, ℓ0, ℓ1, . . . )
then ℓ is a modeling filter for the process X , in the sense that
passing a white noise process through this filter (convolution) gives
a (stationary) process with spectrum SX(ω). The inverse of this
filter w is a whitening filter, in that passing X through it yields a
white noise process. However, since

Sw∗X(ω) = L−1(ω)SX(ω)
(
L−1(ω)

)∗
= S(ω)/ŜX(ω), (1)

if ŜX(ω) differs from SX(ω) the spectrum of the whitened process,
the whitened spectrum, will not be flat.

Reducing the variance of spectral estimates
by control variates

The method of control variates is a variance reduction technique
from Monte Carlo theory. Suppose we want to estimate the expec-
tation µ = EX of some random variable X . Take n IID samples
Xi of X and average

µ̂ = 1
n

n∑
i=1

Xi.

µ̂ is an unbiased estimator of µ with variance var(µ̂) = var(X)/n. A
control variate is a mean zero random variable Y that is correlated
with X . For n IID samples Yi of Y ,

µ̂cv = 1
n

n∑
i=1

Xi − αYi.

will also be an unbiased estimator of µ, but here the variance can
be controlled by α. If α = cov(X, Y )/var(Y ) then

var(µ̂cv) =
(
1 − |ρXY (0)|2

)
var(µ̂)

is minimized in α.
For spectral estimation, observe that at frequencies where the SX(ω)
is overestimated by ŜX(ω) the resulting whitening filter will under
compensate the low power at those frequencies and the estimated
whitened spectrum Ŝw∗X(ω) will be low. This indicates correlation
between Ŝw∗X(ω) and ŜX(ω). So, we take log Ŝw∗X(ω), which is
reasonably assumed to have a small mean, as a control variate
for log ŜX(ω). This suggests the following procedure:
For the time series X = (Xn, n = 1, . . . , N),
1 Divide the full time series into K segments.
2 For each segment k, estimate the spectrum Ŝ(k) and the

whitened spectrum Ŵ (k)
(

= log Ŝw∗X(ω)
)
.

3 Take the logarithm (Ŝ(k))K
k=1 and (log Ŵ (k))K

k=1.

4 Compute α =
covk

(
log Ŝ(k), log Ŵ (k)

)
vark

(
log Ŵ (k)

) , at each frequency.

5 For Ŝ and Ŵ , the spectrum and whitened spectrum of the full
series, the final spectral estimate is then

ŜCV = exp
(
log Ŝ − α log Ŵ

)
.

An Example

Gaussian power spectrum
Consider the process with spectrum given by the Gaussian

S(ω) = 1000
π

e−2ω2
.

This process has an autocorrelation time of about τ ≈ 5 and the
range of the spectrum is 3.7 · 108 ≈ maxω S(ω)/ minω S(ω). Using
3000τ = 15, 000 steps we sample a realization and estimate it’s
power spectrum using BP, BP with control variate (BP+CV), and
MESA, shown in Figure 2.

Figure 2: Gaussian power spectrum estimates

Observe that (1) MESA did well throughout the frequency range,
(2) BP did poorly where S(ω) is small, and (3) BP+CV improved
on BP at estimating some of the lower powers.
For each spectral estimate, we extract a whitening filter and pass
the original data through each filter. MESA naturally produces
a whitening filter form the AR coefficients, for the other methods
we factor the spectrum. Figure 3 shows a plot of the whitened
spectrum associated with each whitening filter. For comparison,
each whitened spectrum is approximated using BP.

Figure 3: Whitened Gaussian power spectrum estimates

Note that MESA preforms both task well. Further note, as (1)
suggests, BP and BP+CV fail to whiten in the frequencies their
estimators are preform poorly.

An application

Kuramoto-Sivashinsky
The Kuramoto-Sivashinsky (KS) equation, given by ut+uux+uxx+
uxxxx = 0, t ∈ [0, ∞), x ∈ [0, L] with periodic boundary conditions,
is a prototypical model of spatiotemporal chaos. Written in terms of
its Fourier coefficients uk, it becomes a system if ordinary differential
equations which we solve using the usual method of fourth order
exponential time differencing (ETDRK4) from [KT05]. For now we
focus on the first Fourier mode u1, whose autocorrelation time we
estimate to be τ ≈ 350 steps. Figure 4 shows the three estimates
of the power spectrum using 2000τ steps.

An application (continued)

Figure 4: KS power spectrum

Figure 5 shows the whitened spectral estimates, as in Figure 3. We
again use PB to estimate the spectra.

Figure 5: KS whitened power spectrum

MESA estimates the spectrum to have very low power (≈ 10−32)
in the high frequencies. The accuracy of this is suggested by the
excellent whitening that MESA effects over those frequencies. In the
low frequencies, however, Mesa does poorly. BP+CV does improve
on BP in both spectral estimation and whitening.

Conclusions

In our experiments, MESA performs very well both in spectral es-
timation and whitening, even in the presence of very low power.
We found control variates to be a simple way to improve the per-
formance of periodogram based estimators. But overall MESA was
out preformed both both PB and PB+CV. [LM22].
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