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What is power spectrum?
Conceptual

(For ease of exposition) Start with a continuous time stochastic process
X (t)

We have
▶ 𝜇t = EX (t)

▶ CX (t, s) = E(X (t) − 𝜇t) (X (s) − 𝜇s)∗

The process is wide-sense stationary if

𝜇t = 𝜇 (constant)
and

CX (t, s) = CX (t − s) (depends on on lag)

Center X (t)
X (t) ← X (t) − 𝜇
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What is power spectrum?
Conceptual

From signals and systems we get the terms
▶ energy

Total energy of X (t) over (t1, t2) =
∫ t2

t1
|X (t) |2dt

▶ power

Total power of X (t) over (t1, t2) =
1

t2 − t1

∫ t2

t1
|X (t) |2dt

If X (t) is deterministic and periodic with period 2T

▶ X (t) =
∞∑︁

n=0
cnei𝜋nt/T

▶ So, total power over (−T , T ) = 1
2T

∫ T

−T
|X (t) |2dt =

∞∑︁
n=0
|cn |2
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What is power spectrum?
Conceptual

Example:
▶ If X (t) = cnei𝜋nt/T then total power = |cn |2

interpretation
|cn |2 = contribution to the total power from the term in the Fourier series of
X (T ) with frequency n/2T Hz (or angular frequency of 𝜋n/T radians per
second).
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What is power spectrum?
Conceptual

If X (t) is deterministic and nonperiodic
▶ X (t) = 1

√
2𝜋

∫ ∞

−∞
G(𝜔)ei𝜔td𝜔 (X ∈ L2 (R)) Fourier integral

▶ So, total energy over R =

∫ T

−T
|X (t) |2dt =

∫ T

−T
|G(𝜔) |2d𝜔

interpretation
|G(𝜔) |2d𝜔 = contribution to the total energy from components of X (t) whose
frequencies lie between 𝜔 and 𝜔 + d𝜔 radians per second.
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What is power spectrum?
Conceptual

If X (t) is stochastic and stationary
▶ take a realization of X (t) X ∉ L2

▶ XT (t) = X (t)I[−T ,T ] (t) XT ∈ L2

▶ XT (t) =
1
√

2𝜋

∫ ∞

−∞
GT (𝜔)ei𝜔td𝜔 where GT (t) =

1
√

2𝜋

∫ T

−T
X (𝜔)e−i𝜔td𝜔

▶ So, we have an interpretation of |GT (𝜔) |2d𝜔

interpretation
|GT (𝜔) |2d𝜔 = contribution to the total energy from components of XT (t)
whose frequencies lie between 𝜔 and 𝜔 + d𝜔 radians per second.
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What is power spectrum?
Conceptual

interpretation

lim
T→∞

|GT (𝜔) |2
2T

d𝜔 = contribution to the total power from components of XT (t)
whose frequencies lie between 𝜔 and 𝜔 + d𝜔 radians per second.

SX (𝜔) = lim
T→∞

E
|GT (𝜔) |2

2T

interpretation
SX (𝜔)d𝜔 = average (over all realizations) of the contribution to the total
power from components in X (t) with frequencies between 𝜔 and 𝜔 + d𝜔
radians per second.
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What is power spectrum?
Operational

Start with Xn
▶ a discrete-time stochastic process,
▶ wide-sense stationary, and
▶ centered.

The power spectrum SX (𝜔) is define by

SX (𝜔) =
∞∑︁

n=−∞
CX (n)e−i𝜔n = F {CX } (𝜔) = ĈX (𝜔)

where CX (n) = EXnX∗0 (Fourier transform of the autocovariance function)
The z-spectrum S̄X (z) is define by

S̄X (𝜔) =
∞∑︁

n=−∞
CX (n)z−n = Z {CX } (𝜔)

(z-transform of the autocovariance function)
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What is power spectrum?
Observation

Observe that, by the inverse Fourier transform formula

var(X) = CX (0) =
1

2𝜋

∫ 𝜋

−𝜋
SX (𝜔)ei𝜔0d𝜔 =

1
2𝜋

∫ 𝜋

−𝜋
SX (𝜔)d𝜔

So that spectrum given the distribution of variance among the
frequencies.
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Mean and Covariance Estimation
We are given data, xn, for n = 1, 2, 3, . . . ,N

Assume it is be a realization of the discrete-time process Xn or
observations of a continuous time process Xtn .
Assume the process Xn is stationary

How do we estimate 𝜇?
By virtue of stationary

𝜇 = EXn ≈
1
N

N∑︁
n=1

xn =: 𝜇

How do we estimate RX (n)?
Again, by virtue of stationary

RX (n) = E[(Xn − 𝜇) (X0 − 𝜇)∗] ≈ 1
N

N−n∑︁
j=1
(xn+j − 𝜇) (xj − 𝜇)∗ =: R̃X (n)
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Spectrum Estimation (sample spectrum)
Periodogram

How do we estimate SX (𝜔)? (assume Xn is mean zero)
Peridogram: (direct approach)

S̃X (𝜔) =
∑︁

n
R̃X (n)e−in𝜔

=
∑︁

n

1
N

∑︁
j

xn+jx∗j e−in𝜔

=
1
N

∑︁
k

∑︁
j

xkx∗j e−ik𝜔eij𝜔

=
1
N

(∑︁
k

xke−ik𝜔

) (∑︁
j

xje−ij𝜔

)∗
=

1
N

x̂ (𝜔)x̂ (𝜔)∗ = 1
N
|x̂ (𝜔) |2 (= abs2.(fft(x))/N)

Asymptotically unbiased but inconsistent (the variance does not vanish as N
gets large).
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Spectrum Estimation
Bartlett

How do else we estimate SX (𝜔)?
Bartlett’s smoothing procedure: cut up the timeseries into k blocks. And
approximate the peridogram S̃ (j)X (𝜔) for each block of data j = 1, 2, . . . , k.

S̃X (𝜔) =
1
k

k∑︁
J=1

S̃ (j)X (𝜔)

This procedure allows us to control the variance, but at the expense of bias.
This procedure can be generalized.
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Spectrum Estimation
Generalized Bartlett

General class of smoothed spectral estimators:
Bartlett:

S̃X (𝜔) =
1
k

k∑︁
n=−k

(
1 − |n|

k

)
R̃X (n)e−in𝜔

General:

S̃X (𝜔) =
1
k

∞∑︁
n=−∞

w (n)R̃X (n)

with

(1) w (0) = 1
(2) w (n) = w (−n)
(3) w (n) = 0, |n| ≥ k, k < N

w is called a windowing function.
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Spectrum Estimation
Generalized Bartlett

Most common window functions,
Bartlett:

w (n) =
{

1 − |n |k , |n| ≤ k
0, |n| > k

Tukey:

w (n) =
{

1
2
(
1 + cos 𝜋n

k
)
, |n| ≤ k

0, |n| > k

Parzen:

w (n) =


1 − 6

( n
k
)2 + 6

(
|n |
k

)3
, |n| ≤ k/2

2
(
1 − |n |k

)3
, k/2 < |n| ≤ k

0, |n| > k

What’s Welch?
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Spectrum Estimation
Burg

Lattice of autoregressive model of order p, p = 1, . . . , pmax.

Xn + a1,pXn−1 + · · · + ap,pXn−p = en,p

ap,pXn + ap−1,pXn−1 + · · · + Xn−p = rn,p

Minimize Ep =

N∑︁
n=p+1
( |en,p |2 + |rn,p |2)

Because of these are linear least squares coefficients

en,p = en,p−1 + ap,prn−1,p−1

rn,p = ap,pen,p−1 + rn−1,p−1

©­­«
a1,p
...

ap−1,p

ª®®¬ =
©­­«

a1,p−1
...

ap−1,p−1

ª®®¬ + ap,p
©­­«
ap−1,p−1

...

a1,p−1

ª®®¬
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Spectrum Estimation
Burg, brief, brief, brief description

We end up with

ap,p = −
2
∑N

n=p+1 en,p−1rn−1,r−1∑N
n=p+1(e2

n,p−1 + r2
n−1,r−1)

For a given p the spectral estimate

ŜBurgX =
𝜎2

p

|A(𝜔) |2
where A(𝜔) =

p∑︁
k=0

ak,pe−ik𝜔

the are a number of information criteria that can be used to select the
order p.
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Example 1: AR(2) Signal
Let us consider the stationary autoregressive process of order 2, with poles at
r1 = .5, r2 = −.8

Yn = (r1 + r2)Yn−1 − r1r2Yn−2 + en = −0.3Yn−1 + 0.4Yn−2 + en, for n > −∞

for en are i.i.d. standard normal random variables.

One way to compute the z-spectrum is as follows. Recognize,

(r ★ Y )n = Yn + 0.3Yn−1 − 0.4Yn−2 = en,

r = (. . . , 0, 1 , 0.3,−0.4, 0, . . . )
So that,

1 = Se(z) = S(r★Y ) = r̄ (z)SY (z) r̄∗(z−∗)
and

SY (z) =
1

r̄ (z) r̄∗(z−∗) =
1

(1 − 0.5z−1) (1 + 0.8z−1) (1 − 0.5z) (1 + 0.8z)
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Example 1: AR(2) Signal
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Example 1: AR(2) Signal
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Example 2: AR(10) Signal
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Example 2: AR(10) Signal
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Example 2: AR(10) Signal

McBride (Applied Mathematics@UA) CKMS Sept 21, 2022 23 / 45



Example 2: AR(10) Signal
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Now, spectral factorization!
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Spectral Factorization

For the numerical spectral factorization we do, assume SX (𝜔) is rational.
Because is a power spectrum, SX (𝜔) ≥ 0 on −𝜋 to 𝜋.
So, we can factor SX (𝜔) = L(𝜔)L∗(𝜔)
▶ L(𝜔) =

√︁
SX (𝜔)

▶ L(𝜔) is minimum phase
minimum phase:
▶ S̄X (z) = L̄(z)L̄∗ (z−∗)
▶ L(𝜔) = L̄(ei𝜔)
▶ (minimum phase) L̄(z) and L̄−1 (z) are analytic on and outside the unit
circle. (L̄(z) has all it’s poles strictly inside the unit circle)

McBride (Applied Mathematics@UA) CKMS Sept 21, 2022 26 / 45



Spectral Factorization
Whitening

Write L−1(𝜔) = ∑∞
n=−∞ wne−i𝜔n

wn is the Fourier coefficients of L−1(𝜔)

It can be shown that

Sw∗X (𝜔) = L−1(𝜔)SX (𝜔)L−∗(𝜔) = SX (𝜔)/SX (𝜔) = 1

w is a whitening filter for X .
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Spectral Factorization
Whitening

If L(𝜔) is minimum phase, so is L−1(𝜔) and

L−1(𝜔) =
∞∑︁

n=0
wne−i𝜔n

So, wn = 0 for n < 0, we say w is causal.
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Spectral Factorization (Numerical)
Most Numerical algorithms assume S(z) is rational and has the form of a
Laurent Polynomial meaning it may be written as

S(z) =
m∑︁

n=−m
cnz−n with cn = c∗−n.

If this is assumed it may be shown that

S+(z) =
∑︁
n=1

Lnzn and S−(z) =
∑︁
n=1

L∗nz−n

(this is what we assume here) Algorithms that use Toeplitz matrices.
Bauer
Schur
Levinson-Durbin

Algorithms that use state-space formulations.
Riccati Equation
Kalman Filter
Chadrasekhar-Kailath-Morf-Sidhu (CKMS)
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A word about DFT
For the DFT which is used frequently in this work I use fft from FFTW.jl
which is a Julia wrapper for the FFTW library written in C.
Here is what it does:

vk = fft(u)k =

N∑︁
j=1

uje−
2𝜋 i
N (j−1) (k−1)

uj = ifft(v)j =
1
N

N∑︁
k=1

vke
2𝜋 i
N (k−1) (j−1)

Here is why I use it so much:
Suppose we have the function S(z) = ∑N

j=1 cjz−(j−1) which we wish to evaluate
at N equally-spaced, unit-circle points zk = e

2𝜋 i
N (k−1) for k = 1, . . . ,N. We

need only use fft to get

S(zk) =
N∑︁

j=1
cje−

2𝜋 i
N (j−1) (k−1) = fft(c)k .
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A word about DFT

So, given a causal finite impulse response (FIR) filter ℓ, it’s transfer function
L(z) evaluated at Nex evenly distributed points on the unit circle is the array(

L(z) : z = e2𝜋ik/Nex for k = 0, . . . ,Nex − 1
)
=

fft([ℓ;zeros(Nex-length(ℓ))])

The first entry corresponds to L(1) and the points go counterclockwise.
So, to get an approximate inverse of an causal FIR a filter.
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Spectral Estimation
Control variates

Parzen (1957): Error in Bartlett mainly due to variance.

Control Variates
▶ Estimate an expectation 𝜇 = EX , of some random variable X
▶ Take n IID samples Xi of X

𝜇 =
1
n

n∑︁
i=1

Xi .

▶ 𝜇 is an unbiased estimator of 𝜇
▶ var(𝜇) = var(X)/n.
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Suppose Y (mean zero) correlated with X .
Take n IID samples Yi of Y
Consider

𝜇cv =
1
n

n∑︁
i=1

Xi − 𝛼Yi

▶ 𝜇cv is an unbiased estimator of 𝜇
▶ var(𝜇cv) = 1

nvar(X − 𝛼Y ) and

var(X − 𝛼Y ) = E(X − 𝛼Y − 𝜇) (X − 𝛼Y − 𝜇)∗

= E(X − 𝜇) (X − 𝜇)∗ − 𝛼EY (X − 𝜇)∗ − E(X − 𝜇)Y ∗𝛼∗ + 𝛼EYY ∗𝛼∗

= var(X) − 2R{𝛼cov(Y ,X)} + |𝛼 |2var(Y )

▶ minimizer 𝛼 =
cov(Y ,X)∗
var(Y ) =

cov(X ,Y )
var(Y )
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So, for this 𝛼 =
cov(X ,Y )
var(Y )

var(X − 𝛼Y ) = var(X) − |cov(X ,Y ) |2
var(Y ) =

(
1 − |𝜌XY (0) |2

)
var(X).

And,

var(𝜇cv) = 1 − |𝜌XY (0) |2
n

var(X) =
(
1 − |𝜌XY (0) |2

)
var(𝜇)

.

How do I apply to spectral estimation?
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For timeseries X = (Xj , j = 1, . . . ,N),
1 Divide the full timeseries X into K segments.
2 For each segment k, estimate the spectrum Ŝ (k) and the whitened
spectrum Ŵ (k) .

3 Take the logarithm (log Ŝ (k) )Kk=1 and (log Ŵ (k) )Kk=1.

4 Compute 𝛼 =
covk (log Ŝ (k) ,log Ŵ (k) )

vark (log Ŵ (k) ) , at each frequency.

5 For Ŝ and Ŵ , the spectrum and whitened spectrum of the full series, put

ŜCV = exp
(
log Ŝ − 𝛼 log Ŵ

)
.
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Example 1: AR(2)
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Example 2: AR(10) Signal
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Example 2: AR(10) Signal
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Example 2: AR(10) Signal
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Example 3: KSE

I first saw this while trying to whiten a KSE solution.

The Kuromoto-Sivishinsky equation (KSE) can be written as follows

ut + uux + uxx + uxxxx = 0

with u(x + L, t) = u(x, t) for all x ∈ R and t > 0. And with u(x, 0) = g(x).
Now, we use a fourier series to rewrite the KSE is Fourier space. Doing so
gives

¤̂uk = (q2
k − q4

k )ûk −
iqk

2

∞∑︁
ℓ=−∞

ûℓ ûk−ℓ (1)

Here, qk = 2𝜋
L k. Note the trick: uux = 1

2
(
u2)

x .
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Example 3: KSE
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Example 3: KSE
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Example 3: KSE

McBride (Applied Mathematics@UA) CKMS Sept 21, 2022 44 / 45



Thank you!

Ali H Sayed and Thomas Kailath.
A survey of spectral factorization methods.
Numerical linear algebra with applications, 8(6-7):467–496, 2001.

Thomas Kailath, Ali H Sayed, and Babak Hassibi.
Linear estimation.
Number BOOK. Prentice Hall, 2000.

McBride (Applied Mathematics@UA) CKMS Sept 21, 2022 45 / 45


	What is the power spectrum of a stationary stochastic process?
	Conceptual definition
	Operation definition

	Spectral Estimation
	Periodogram
	Generalized Bartlett
	Maximal Entropy Spectral Analysis
	Examples

	Spectral Factorization
	Whitening

	Spectral Estimation (reprisal)
	Control Variate
	More Examples

	Conclusions

