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. Program in Applied
Outline A‘ Mathematics
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What is power spectrum?

Conceptual A

@ (For ease of exposition) Start with a continuous time stochastic process
X(t)

Program in Applied
Mathematics

@ We have
> e =EX()

> Cx(t,s) = B(X(1) — u)(X(s) — ps)"

o The process is wide-sense stationary if
U = (constant)

and
Cx(t,s) = Cx(t—5s) (depends on on lag)

@ Center X (f)

X(t)xX(t)—u
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hat 1 r rum?
What 1s power spectru ‘Program i Applied
Conceptual é& Mathematics

@ From signals and systems we get the terms

> energy
t
Total energy of X(t) over (t1,t2) = / X (t)|%dt
t
> power

1 fe
Total power of X (t) over (t1,t2) = ﬁ/ X (t)|2dt
2 — 11 Jy

o If X(t) is deterministic and periodic with period 2T
> X(t) — cheinnt/T

n=0
107 -
> So, total power over (=T, T) = —/ X (t)|2dt = Z lcnl?
2T J_r pr

A
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What is power spectrum?

A ‘ Program in Applied
Conceptual .| Mathematics

e Example:

» If X(t) = cpe’™™/T then total power = |c,|?

interpretation
|c,|? = contribution to the total power from the term in the Fourier series of

X (T) with frequency n/2T Hz (or angular frequency of 7n/T radians per
second).
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What is power spectrum?
Conceptual A

Program in Applied
Mathematics

o If X(t) is deterministic and nonperiodic

1 [ :
» X(t) = \/?/ G(w)e'“'dw (X € L2(R)) Fourier integral
T J—0co

T T
> So, total energy overRz/ |X(t)|2dt:/ |G(w)|?dw
-T -T

interpretation

|G(w)|?dw = contribution to the total energy from components of X (t) whose
frequencies lie between w and w + dw radians per second.
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hat 1 r rum?
What 1s power spectru ‘Program i Applied
Conceptual é& Mathematics

o If X(t) is stochastic and stationary

> take a realization of X (t) X ¢l?
> Xr(t) =X(O)I-r,71(1) Xr e lL?

1 0 . 1 T )
> Xr(t) = \/?/ Gr(w)e'“'dw where Gr(t) = \/? /T X(w)e “'dw
JT J —c0 T J—

» So, we have an interpretation of |Gr(w)|?dw

interpretation

|G7(w)|?dw = contribution to the total energy from components of X7 (t)
whose frequencies lie between w and w + dw radians per second.
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What is power spectrum?

Program in Applied
Conceptual A‘ Mathematics
interpretation

. |Gr(w)|? o

lim ————dw = contribution to the total power from components of X7 (t)

T—oo 2T
whose frequencies lie between w and w + dw radians per second.

G 2

interpretation

Sx (w)dw = average (over all realizations) of the contribution to the total
power from components in X (t) with frequencies between w and w + dw
radians per second.

A
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hat 1 r rum?
W at S powe SpeCt u §§§ ‘ Program in Applied
Operational .| Mathematics

o Start with X,

> a discrete-time stochastic process,
» wide-sense stationary, and
» centered.

o The power spectrum Sy (w) is define by

Sx(@) = ) Cx(me " = F {Cx} (@) = Cx(w)

n=-—oo

where Cx(n) = EX, X (Fourier transform of the autocovariance function)
@ The z-spectrum Sx(z) is define by

Sx(@) = ) Cx(Mz™" = Z{Cx} (w)

(z-transform of the autocovariance.function)
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hat 1 r rum?
What 1s power spectru brogram in Applied
Observation é& Mathematics

@ Observe that, by the inverse Fourier transform formula

1 Ve . 1 T
var(X) = Cx(0) = E‘/ Sx(w)e'“°dw = 5/ Sx(w)dw

So that spectrum given the distribution of variance among the
frequencies.
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Mean and Covariance Estimation A‘ program in Applied

We are given data, x,, forn=1,2,3,...,N

@ Assume it is be a realization of the discrete-time process X, or
observations of a continuous time process X;, .

@ Assume the process X, is stationary

How do we estimate u?
By virtue of stationary

How do we estimate Ry (n)?
Again, by virtue of stationary

N—
Rx(n) = E[(X, - 1) (Xo — )] Nan+,—ﬁ>(x,-—ﬂ)*=:ﬁx(n>
A
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Spectrum Estimation (sample spectrum)

Periodogram A

How do we estimate Sy (w)? (assume X, is mean zero)
Peridogram: (direct approach)

Sx(w) = ) Rx(me™
n
_ Z % Z Xy €71
no g
— % Z Zxkxj*e—ikweijw
Ko
1 Z Xke—iku)) (Z Xje—ijw)
K j

N
= %)?(a)))?(w)* = %|)A((a))|2 (= abs2. (f£ft(x))/N)

Program in Applied
Mathematics

Asymptotically unbiased but inconsistent (the variance does not vanish as N

gets large). VN
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Spectrum Estimation
Bartlett A

Program in Applied
Mathematics

How do else we estimate Sx (w)?
Bartlett’s smoothing procedure cut up the timeseries into k blocks. And
approximate the peridogram S (a)) for each block of dataj =1,2,...,k.

59 (w)

M=

~ 1
Sx(w) = p
=

This procedure allows us to control the variance, but at the expense of bias.
This procedure can be generalized.
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Spectrum Estimation

Program in Applied
Generalized Bartlett A

Mathematics

General class of smoothed spectral estimators:

Bartlett: .
o _ 1 |n| e —inw
Sx(@) =1 ) (1 - 7) Bx(n)e
n=—k
General:
~ 1 = -
Sx(@) = 2, wmx()
with

(1 w()=1
@  wn)=w(-n)
(3) w(n)=0, |nl=k, k<N

w is called a windowing function.
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Spectrum Estimation

Program in Applied
Generalized Bartlett A

Mathematics

Most common window functions,

Bartlett:
- 110 |n <k
w(n) =
0, |n| > k
Tukey:
T (1+cosZ2), |n| <k
w(n) =172 k
0, |n] > k
Parzen:

n\2 Inl)®
1-6(3) +6(7) , In] <k/2
= inf)®
w(n) = 2(1—7), k/2 < |n| <k
0, |n| > k
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Spectrum Estimation

Program in Applied
Generalized Bartlett A

Mathematics

Most common window functions,

Bartlett: il
n
W(n) 1-— K |n| <k
0, |n| > k
Tukey:
]
w(n) = 3(1+cosZ), |n| <k
0, |n] > k
Parzen: 5
1 —6(5)%6(%) . In| < k/2
= inl\°
w(n) = 2(1—7), k/2 < |n| <k
0, |n| > k
What’s Welch?
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Spectrum Estimation -
‘ Program in Applied
Burg A Mathematics
o Lattice of autoregressive model of order p, p =1,. .., Pmax-
Xn+aypXnt +--+ap pXnp=e€np
ap’an + ap_1’an_1 + -+ Xn_p = rn’p
N

n=p+1
@ Because of these are linear least squares coefficients

€n,p = €np-1+3ap,pln-1,p-1

I'n,p = 8p,p€n,p—1 + I'n-1,p-1

ai,p at,p-1 ap-1,p-1
: = : +app

ap-1,p ap—1,i—1 ai1,p—1
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Spectrum Estimation -
‘ Program in Applied
Burg, brief, brief, brief description A Mathematics

@ We end up with

N
2 Zn=p+1 en,p71 In—1 r—1

2 2
n=p+1 (en,p—1 + rn—1 ,r—1)

Aop =

@ For a given p the spectral estimate

AB o5 < ik
S~ where A(w) = Z axpe
X |A(w)]? pard

the are a number of information criteria that can be used to select the
order p.

A
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Program in Applied
Mathematics

Example 1: AR(2) Signal A,

Let us consider the stationary autoregressive process of order 2, with poles at
rn=.5rn=-.8

Yn=(ri+r)Yn1—rirnYnos+e,=-0.3Y,1+0.4Y, 5 +e,, forn > —oo
for e, are 1.i.d. standard normal random variables.

One way to compute the z-spectrum is as follows. Recognize,
(I’ * Y)n =Y,+0.3Y,_1 —0.4Y,5 = e,

r=(..,0,[1},03,-0.4,0,...)
So that,
1= Se(z) = S(r*Y) = F(Z)SY(Z)F*(Z_*)
and
1 1
F2)F(z")  (1-05z1)(1+0.821)(1 — 0.52)(1 + 0.82)
A

Sy(z) =
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Example 1: AR(2) Signal A Program In Applied

using DSP, PyPlot, FFTW

at = include("../../Tools/AnalysisToolbox.j1")
se = include("../../Tools/SpecEst.jl1")

bg = include("../../Tools/Burg.jl")

[SYRS Y

[« T =Y

rl = .5; rz = -.8
r =111, -(rl + r2), ri*r2]
f(z) = sum{r[j]*z~(1-j) for j=1:3)

oo

[¥=]

N = 18"4
11 il = ZeroPoleGain(zeros(®),[r1,r2],1)
y = filt(fil,randn(N))

,\
o]

=
W

Sy_per = abs2.(fft(y))/N

Sy_num_gb = se.spec_GB(at.rowmatrix(y); Nex = N).S[:]

16 Sy_num_burg = bg.spec_mesa_sc(at.rowmatrix(y); Nex = N, p_max = 188).5[:]
17 sy_ana = map(z -> 1/abs2(f(z)),exp.(2pi*im*(8:N-1)/N))

I
oL

I
oo

[Fe]

8 = 2pi*(B:N-1)/N .- pi

title("Spectral estiames of AR(2) process"})
semilogy(@,ifftshift(Sy_per), label = "Periodogram")
semilogy(@,ifftshift(Sy_num_gb}, label = "Smoothed periodogram™)
semilogy(®@,ifftshift(Sy_num_burg), label = "Burg")
semilogy(@,ifftshift(Sy_ana), "--", label = "Truth")
ylabel("Power™)

xlabel(L"\omega™)

legend()
McBride i

-
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Example 1: AR(2) Signal A‘ Program in Applied

Spectral estiames of AR(2) process

107 3
10! 3
10° 3
5 )
= 1071 4
£ ]
1072 3
3 ) Periodogram
10 1 —— Smoothed periodogram
{ —— Burg
10-44 Truth
E T T T T T T T
-3 -2 -1 0 1 2 3
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Example 2: AR(10) Signal A Program In Applied

using DSP, PyPlet, FFTW, Polynomials
at = include("../../Tools/AnalysisToolbox.jl")

Poles = [.2];

Zeros = [.99exp(1im*3pi/4); .99%exp(-1lim*3pi/4);
-Qexp(lim*3pi/2*.9); .9exp(-1im*3pi/f2*.9);
«Oexp(1im*3pi/2*.9); .%exp(-1im*3pi/f2*.9)]

spec = x -> at.poles2spec(Poles)(x) * at.zeros2spec(Zeros)(x)
spec = spec o at.expi

N = 18™4
X = at.ARMA_gen(; steps = N, Poles, Zeros, rl = true)
X = at.rowmatrix(X)

Nex = 1888
L = 5ee

fgrid = se.@(Nex) .- pi
SX_ana = spec.(fgrid);

. @

SX_per = abs2.(fft(X[:]))/N
SX_num_gb = se.spec_GB({X; L, Nex).S[:]
SX_num_burg = bg.spec_mesa_sc(X; Nex, p_max = 188).5[:]

MNOMORN RN
Wk

n B

0 = 2pi*(@:N-1)/N .- pi

title("Spectral estiames of ARMA(1,6) process, N = $N")
semilogy(0,ifftshift(SX_per), label = "Periodogram”)
semilogy(fgrid,ifftshift(SX_num_gb), label = "Smoothed periodogram™)
semilogy(fgrid, ifftshift(SX_num_burg), label = "Burg”)
semilogy(fgrid,SX_ana, "--", label = "Truth")

ylabel("Power™)

xlabel(L"\omega")

CKMS Sept 21, 2022 21/45



Example 2: AR(10) Signal A’ Program in Applied

Spectral estiames of ARMA(L,6) process, N = 10000

107
103 4
101 -
o
=
£
1071 1
-3
10 Periodogram
—— Smoothed periodogram
—— Burg
-5 |
10 ——- Truth
T T T T T T T
-3 -2 -1 0 1 2 3
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Example 2: AR(10) Signal A‘ Program in Applied

Spectral estiames of ARMA(1,6) process, N = 100000

1_05 4
1_03 4
1_01 4
e
]
=
&
10—1 4
-3 4
10 Periodogram
Smoothed periodogram
—— Burg
-5 |
10 === Truth
T T T T T T T
-3 =2 -1 0 1 2 3
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Example 2: AR(10) Signal A‘ Program in Applied

Spectral estiames of ARMA(1,6) process, N = 1000000

1_05 .
1_04 4
1_02 4
1_00 4
1
T
=
e 10—2 4
10—4 4
106 1 Periodogram
—— Smoothed periodogram
10-8 4 —— Burg
——= Truth
T T T T T T T
-3 -2 -1 0 1 2 3
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Now, spectral factorization!
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Spectral Factorization .Z.R.).‘ Mathematics

@ For the numerical spectral factorization we do, assume Sx (w) is rational.

@ Because is a power spectrum, Sx(w) > 0 on —7x to 7.
@ So, we can factor Sy (w) = L(w)L"(w)

> L(w) = ySx(w)

» [ (w) is minimum phase

@ minimum phase:
- 5x(2) =L@ (z™)
> L(w) =L(e?) _
> (minimum phase) L(z) and L~"(z) are analytic on and outside the unit
circle. (L(z) has all it’s poles strictly inside the unit circle)
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Spectral Factorization -
o Program in Applied
Whitening A‘ Mathematics

o Write L™ (w) = Y00 wpe '@

@ w, is the Fourier coefficients of L™ (w)

@ It can be shown that
Swix(w) = L (w)Sx (W)L (w) = Sx(w)/Sx(w) =1

@ w is a whitening filter for X.

McBride (Applied Mathema J CKMS Sept 21, 2022 27145



Spectral Factorization S
o Program in Applied
Whitening A Mathematics

@ If L (w) is minimum phase, so is L~ (w) and
L () = ) wpe "
n=0

So, w, = 0 for n < 0, we say w is causal.
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Program in Applied
Mathematics

Spectral Factorization (Numerical) A,

Most Numerical algorithms assume S(z) is rational and has the form of a
Laurent Polynomial meaning it may be written as

m
S(z) = Z ez withe, =c?,.

n=—m

If this is assumed it may be shown that
S*(2) = Z L,Z2" and S (2)= Z Lyz™"
n=1 n=1

(this is what we assume here) Algorithms that use Toeplitz matrices.
o Bauer

@ Schur
o Levinson-Durbin
Algorithms that use state-space formulations.
@ Riccati Equation
o Kalman Filter

° Chadrasekhar—Kailath—Morf—Sidh“CKMS)
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Program in Applied
.| Mathematics

A word about DFT A

For the DFT which is used frequently in this work I use ££t from FFTW.jl
which is a Julia wrapper for the FFTW library written in C.
Here is what it does:

N

Vi = £Ft(u)y = Zue 230 (j-1) (k-1)
j=1
19 2w
up = iff‘t(V)j = N Z vkeT(k_”(H)
k=1

Here is why I use it so much:
Suppose we have the function S(z) = Z/.'i 1 cjz‘("1) which we wish to evaluate

at N equally-spaced, unit-circle points zx = eW k=1 for k = 1,...,N. We
need only use fft to get

N
S(z) =) e~ W UKD = £t (c),.
A
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Program in Applied
Mathematics

A word about DFT A,

So, given a causal finite impulse response (FIR) filter £, it’s transfer function
L(z) evaluated at Ngy evenly distributed points on the unit circle is the array

L(z) : z = *™*/Nex for k = 0,. .., Ngx — 1) =
fft([{;zeros(Nex-length(£))1)

The first entry corresponds to L(1) and the points go counterclockwise.
So, to get an approximate inverse of an causal FIR a filter.
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Spectral Estimation S
Program in Applied
Control variates A Mathematics

@ Parzen (1957): Error in Bartlett mainly due to variance.

@ Control Variates

> Estimate an expectation u = EX, of some random variable X
> Take n IID samples X; of X

» (1 is an unbiased estimator of u
» var(g) = var(X)/n.

A
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@ Suppose Y (mean zero) correlated with X.
o Take n IID samples Y; of Y

@ Consider

1 n
ace = ;ZX/' -aY
i1

» ¢ is an unbiased estimator of u
» var(a®) = ,1—7var(X —aY) and
var(X —aY) =EX —aY —u)(X —aY — p)*
=SEX-uw)X - —aBYX—uw)" —-EX -p)Y*a" +aEBYY
= var(X) — 2R{acov(Y, X)} + |a|?var(Y)
cov(Y,X)* cov(X,Y)

> minimizer @ = =
var(Y) var(Y)

A
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X, Y
@ So, for this @ = M

var(Y)
var(X — aY) = var(X) — % - (1 - |pxy(0)|2) var(X).
o And,
var(i®) = Mvmm = (1= 1oxy () var(2)
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X, Y
@ So, for this @ = M

var(Y)
var(X — aY) = var(X) — % - (1 - |pxy(0)|2) var(X).
o And,
var(i®) = Mvmm = (1= 1oxy () var(2)

@ How do I apply to spectral estimation?

A
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For timeseries X = (X;, j=1,...,N),
@ Divide the full timeseries X into K segments.
@ For each segment k, estimate the spectrum S®) and the whitened
spectrum W,
© Take the logarithm (log é(k)),’f:1 and (log W(k))l'f:1.
covk(log 5k ,log W(k))
vark(log W(k))

©Q Compute a = , at each frequency.

@ For S and W, the spectrum and whitened spectrum of the full series, put

SOV = exp (Iogé — alog W) .
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Example 1: AR(2) A‘ Program in Applied

Spectral estimates of AR(2) process

—— Smoothed periodogram (SP)
10* 1 —— Burg
1 === Truth

—-= SP with control variate

Power

107 1

ied Mathemat J CKMS Sept 21, 2022 36/45



Example 2: AR(10) Signal A‘ Program in Applied

Spectral estiames of ARMA(1,6) process, N = 10000

1_04 4
1_02 4
& 1001
=
£
10—2 4
—— Smoothed periodogram
1074 —— Burg
=== Truth
f —-= SP with control variate i
T T T T T T T
=3 =2 =1 0 1 2 3
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Example 2: AR(10) Signal A‘ Program in Applied

Mathematics

Spectral estiames of ARMA(1,6) process, N = 100000

1_04 4

102 A

1_00 4

Power

1_0—2 4

1074 1

—— Smoothed periodogram
—— Burg
=== Truth
—-= SP with control variate

McBride (/

-3 -2 -1 0 1 2 3
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Example 2: AR(10) Signal A‘ Program in Applied

Spectral estiames of ARMA(1,6) process, N = 1000000

105 i
103 4
101 4
1
T
=
a 10—1 4
10—3 4
—— Smoothed periodogram
. —— Burg v
1075 1 —-—=- Truth
—-= SP with control variate
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EXample 3: KSE A‘ Program in Applied

Mathematics

I first saw this while trying to whiten a KSE solution.
The Kuromoto-Sivishinsky equation (KSE) can be written as follows
Ut + Uy + Uxy + Uxxxx =0
withu(x +L,t) = u(x,t) forall x € R and t > 0. And with u(x, 0) = g(x).
Now, we use a fourier series to rewrite the KSE is Fourier space. Doing so
gives
Ok = (g7 — g 0k - 9 Z Ueli—¢ )]
k — Yk 2 L

Here, gk = Z%k. Note the trick: uuy = 3 (u?)..

A
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. Program in Applied
Example 3: KSE /A

1 times filtered processes

Estimated Spectral density of whitened process Transfer functions of filter 1
10! 4 — CKMs
——- Cholesky
6000 4
1071
4000 4
1073 4
2000 4
1075
— CKMs 0
10-74 """ Cholesky
—— Original process
1073 1072 1071 10° 10! o 1 2 3 4 5 6
. i . 2 times filtered processes . )
Estimated Spectral density of whitened process Transfer functions of filter 2
10! 4000 — CKMs
-—- Cholesky
3000 4
1014
2000 4
-3 ]
1o 1000 4
1075 A B
— CKMs ~1000
107 ~~- Cholesky
—— original process ~2000
1073 1072 1071 100 10! o 1 2 3 4 5 6
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Example 3: KSE

§§§ Program in Applied
.| Mathematics

3 times filtered processes

Estimated Spectral density of whitened process

Transfer functions of filter 3

10-1 4

1073 4

1075 4

10-7 4

— CKMs /A
=== Cholesky b
—— Original process

— CKMS

——- Cholesky

1073 1072 107! 100

10!

4 times filtered processes

Estimated Spectral density of whitened process

Transfer functions of filter 4

— CKMS
——- Cholesky

2000 4
1014
1000
1073 4
04
0 ! g
~1000 \ ;
— CKMs \ / -
107 ~~- Cholesky 2000 ' i \J
—— original process v
1073 1072 1071 100 10! o 1 2 3 4 5 6
CKMS Sept 21, 2022
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. Program in Applied
Example 3 KSE A‘ Maﬁlematicsppl

5 times filtered processes

Estimated Spectral density of whitened process Transfer functions of filter 5
10! 4 — CKMs
50
_\/\ —=- Cholesky
-1 4
10 04
-3 ]
10 5o
-5 <
10 ~100
— CKMs
107 ~~- Cholesky
—— Original process —150
1073 1072 1071 100 10! o 1 2 3 4 5 6
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Example 3: KSE

§§§ Program in Applied
.| Mathematics

4 times filtered processes (direct)

Estimated Spectral density of whitened process

Transfer functions of filter 4

10 4 \ — CKMS
—-- Cholesky
2000 4
10°14
1000
1073 4
04
07 ! !
~1000 \ !
— CKMs \ ]
=== Ccholesky vy N
1077 ~2000 \ 7 w
—— Original process [
1073 1072 107! 10° 10! o 1 2 3 4 5 6
. i ~ 5times filtered processes (direct) . )
Estimated Spectral density of whitened process Transfer functions of filter 5
_________ — CKMs
50
1019 ——- Cholesky
1071 0
1073 q —50
1075 9 —1004
— CKMs
10-7 1 - Cholesky
— Original process ~150 1
1073 1072 1071 100 10! o 1 2 3 4 5 6
CKMS Sept 21, 2022
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Thank you!

[§ Ali H Sayed and Thomas Kailath.
A survey of spectral factorization methods.
Numerical linear algebra with applications, 8(6-7):467—496, 2001.

ﬁ Thomas Kailath, Ali H Sayed, and Babak Hassibi.
Linear estimation.
Number BOOK. Prentice Hall, 2000.
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