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Definitions
Stochastic process: A family of random variables indexed by an index set
(discrete or continuous). E.g. X : Ω × R→ Cn or X : Ω × Z→ Cn

Timeseries: A (deterministic) realization of a stochastic process (discrete or
continuous) that is indexed by time. In this talk this is indexed over a finite set.
E.g. x : {1, 2, . . . ,N} → Cn

Stationary stochastic process: (Sometimes called wide-sense stationary) A
stochastic process satisfying the following conditions:

EXt = 𝜇 (no dependence on t)
E[(Xt − 𝜇) (Xs − 𝜇)∗] = RX (t − s) (depends only on difference t − s)

Where the asterisks ∗ denote the conjugate transpose.
Stationary timeseries: (Sometimes called wide-sense stationary) A
timeseries realization of a stationary stochastic process.

(These may be vector-valued. Timeseries of this type is often referred to as
multiple timeseries)
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Definitions (naive systems analysis)
Signal: A stochastic process or a timeseries.
System: An operator. A function from a Hilbert space to a Hilbert space.
Linear time-invariant system: A linear time-invariant operator. It can be
show that in the contexts of Hilbert spaces these can be represented as integral
operators with kernel of one variable. So

L : L2 → L2 is LTI Lx (t) =
∫ ∞

−∞
x (s)h(t − s)ds

or in discrete time

L : ℓ2 → ℓ2 is LTI Lxn =

∞∑︁
k=−∞

xkh(n − k).

Notice this is just a convolution.
z-series: Given a sequence a (bilaterally infinite) the z-series is the complex
function

â(z) =
∞∑︁

k=−∞
akz−k .
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Definitions (naive systems analysis)

Impulse response of a system: The output of the system when the impulse
signal 𝛿 = (. . . , 0, 1, 0, . . . ) is the input. Notice that this recovers the kernel.

L𝛿n =

∞∑︁
k=−∞

𝛿kh(n − k) = hn

Transfer function of an LTI system: The z-series of the impulse response of
a system

ĥ(z) =
∞∑︁

k=−∞
hkz−k .
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Definitions
Covariance function: (Sometimes Covariance sequence in discrete time)
Given a stochastic process X it is the function

RX (t, s) = E[(Xt − 𝜇) (Xs − 𝜇)∗]
(we are exclusively concerned with discrete-time stationary processes so we
have)

RX (n,m) = E[(Xn − 𝜇) (Xn − 𝜇)∗] = RX (n − m) n,m ∈ Z
Observe, in the vector case this is matrix valued.
Power spectrum: The Fourier series of the covariance sequence

SX (𝜔) =
∞∑︁

k=−∞
RX (k)e−ik𝜔

z-spectrum: The z-series of the covariance sequence

S̄X (z) =
∞∑︁

k=−∞
RX (k)z−k
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Definitions and properties

Convolution: given two processes X and Y ,

(Y ★ X)n = (X ★ Y )n =

∞∑︁
k=−∞

YkXn−k

Convolution theorem: The z-series of a convolution is the product of the
z-series �(a★ b)n(z) = â(z)b̂(z)

Spectrum of convolution: Suppose Y is stationary stochastic (disctrete-time)
process and r ∈ ℓ1, then

Sr★Y = r̂ (z)SY (z) r̂∗(z−∗)
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Mean and Covariance Estimation
We are given data, xn, for n = 1, 2, 3, . . . ,N

Assume it is be a realization of the discrete-time process Xn or
observations of a continuous time process Xtn .
Assume the process Xn is stationary

How do we estimate 𝜇?
By virtue of stationary

𝜇 = EXn ≈ 1
N

N∑︁
n=1

xn =: 𝜇

How do we estimate RX (n)?
Again, by virtue of stationary

RX (n) = E[(Xn − 𝜇) (X0 − 𝜇)∗] ≈ 1
N

N−n∑︁
j=1

(xn+j − 𝜇) (xj − 𝜇)∗ =: R̃X (n)
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Spectrum Estimation (sample spectrum)
How do we estimate SX (𝜔)? (assume Xn is mean zero)
Peridogram: (direct approach)

S̃X (𝜔) =
∑︁

n
R̃X (n)e−in𝜔

=
∑︁

n

1
N

∑︁
j

xn+jx∗j e−in𝜔

=
1
N

∑︁
k

∑︁
j

xkx∗j e−ik𝜔eij𝜔

=
1
N

(∑︁
k

xke−ik𝜔

) (∑︁
j

xje−ij𝜔

)∗
=

1
N

x̂ (𝜔)x̂ (𝜔)∗ = 1
N
|x̂ (𝜔) |2 (= abs2.(fft(x))/N)

Asymptotically unbiased but inconsistent (the variance does not vanish as N
gets large).
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Spectrum Estimation

How do else we estimate SX (𝜔)?
Bartlett’s smoothing procedure: cut up the timeseries into k blocks. And
approximate the peridogram S̃ (j)

X (𝜔) for each block of data j = 1, 2, . . . , k.

S̃X (𝜔) =
1
k

k∑︁
J=1

S̃ (j)
X (𝜔)

This procedure allows us to control the variance, but at the expense of bias.
This procedure can be generalized.
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Spectrum Estimation

General class of smoothed spectral estimators:
Bartlett:

S̃X (𝜔) =
1
k

k∑︁
n=−k

(
1 − |n|

k

)
R̃X (n)e−in𝜔

General:

S̃X (𝜔) =
1
k

∞∑︁
n=−∞

w (n)R̃X (n)

with

(1) w (0) = 1
(2) w (n) = w (−n)
(3) w (n) = 0, |n| ≥ k, k < N

w is called a windowing function.
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Spectrum Estimation

Most common window functions,
Bartlett:

w (n) =
{

1 − |n |
k , |n| ≤ k

0, |n| > k

Tukey:

w (n) =
{

1
2
(
1 + cos 𝜋n

k
)
, |n| ≤ k

0, |n| > k

Parzen:

w (n) =


1 − 6

( n
k
)2 + 6

(
|n |
k

)3
, |n| ≤ k/2

2
(
1 − |n |

k

)3
, k/2 < |n| ≤ k

0, |n| > k
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Example 1: AR(2) Signal
Let us consider the stationary autoregressive process of order 2,

Yn = (r1 + r2)Yn−1 − r1r2Yn−2 + Un, for n > −∞

for r1, r2 ∈ {z : |z | < 1} and Un are i.i.d. standard normal random variables.

One way to compute the z-spectrum is as follows. Recognize,

(r ★ Y )n = Yn − (r1 + r2)Yn−1 + r1r2Yn−2 = Un,

r = (. . . , 0, 1 ,−r1 + r2, r1r2, 0, . . . )

So that,
1 = SU (z) = S(r★Y ) = r̂ (z)SY (z) r̂∗(z−∗)

and

SY (z) =
1

r̂ (z) r̂∗(z−∗) =
1

(1 − r1z−1) (1 − r2z−1) (1 − r∗1z) (1 − r∗2z)
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Example 1: AR(2) Signal
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Example 1: AR(2) Signal
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Example 2: AR(10) Signal
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Example 2: AR(10) Signal
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Example 2: AR(10) Signal
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Example 2: AR(10) Signal

McBride (Applied Mathematics@UA) CKMS Oct 15, 2021 19 / 64



More Definitions

A linear filter: A sequence of deterministic elements hn,k , n, k > −∞ that
operates on a signal by way of convolution.

Yn = (X ★ hn, ·)n =

∞∑︁
k=−∞

hn,k · Xn−k =

∞∑︁
k=−∞

hn,n−k · Xk

Time-invariant: A filter is time-invariant when hn,k has no dependence on n.
So, hn,k = hk .

Recall, any LTI system can be represented by convolving the input signal with
the impulse response of the system.

Alternatively, an LTI system can be characterized by it’s transfer function.
Then the input-output relation can be described in the z-series (z-transform)
domain.

Ŷ (z) = H (z)X̂ (z)
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More Definitions

Causal: A linear time-invariant filter is causal if it’s impulse response is
causal which means hk = 0 for k < 0.
BIBO Stability: A LTI system is stable if given a bounded input the output of
the system is bounded.
Inverse: The inverse of an LTI system maps the output to the input.
Suggested by the alternative characterization above the we have

X̂ (z) = 1
H (z) Ŷ (z)

A few facts:
A LTI system is BIBO stable if its impulse response hk is absolutely
summable. It’s transfer function H (z) converges on the unit circle.
If a system is causal (and stable) and has a rational transfer function the
poles lie within the unit circle.
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More Definitions

Minimum-phase: A linear time-invariant system H (z) is minimum-phase if
it and it’s inverse H (z)−1 are both causal and stable.

This means if H (z) is rational all zeros and poles lie strictly with in the unit
circle.

Example:
The system that takes in a white noise signal and outputs an MA(q)
process is causal it’s transfer function has no poles, but it is only causally
invertable (and therefore minimum-phase) if it’s zeros are within the th
unit circle.
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More Definitions
Standard state-space model: A model of the following form:{

Xi+1 = FiXi + Giui
Yi = HiXi + vi

where Fi ∈ Cn×n, Gi ∈ Cn×m, and Hi ∈ Cp×n are known matrices, and u = {ui},
v = {vi}, and X0 are variables with the following property

E ©­«
X0
ui
vi

ª®¬
©­­­«
X0
uj
vj
1

ª®®®¬
∗

=
©­«
Π0 0 0 0
0 Qi𝛿ij Si𝛿ij 0
0 S∗

i 𝛿ij Ri𝛿ij 0

ª®¬
Y is the output (or observations).
X is the state variable.
u is the process (or plant) noise
v is the measurement noise.
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More Definitions

Kalman filtering: Given a process represented by a standard statespace
model, we may wish to estimate various quantities, usually the state variable.
Kalman filtering provides a theory for computing (recursively) the least linear
mean square estimators given observation {y1, y2, . . . , yi}, given observations
of Yi .

The heart of the issue is the computation of the innovations sequence

Ei = Yi − E[Yi |Yi−1,Yi−2, . . . ,Y1]

One contribution of Kalman was to devise a recursion to compute the
innovations.
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Kalman Filtering

The Innovations Recursions [1, p. 317]
Consider the standard statespace model{

Xi+1 = FiXi + Giui
Yi = HiXi + vi

i ≥ 0

The innovations process of Y can be recursively computed using the equations

Ei = Yi − Hi𝜃 i , 𝜃0 = 0, E0 = Y0,

𝜃 i+1 = Fi𝜃 i + Kp,iEi , i ≥ 0,

where Kp,i = (FiPiH∗
i + GiSi)R−1

e,i , Re,i = Ri + HiPiH∗
i , and

Pi+1 = FiPiF∗
i + GiQiG∗

i − Kp,iRe,iKp,i , P0 = Π0

Here, Pi = EX̃i X̃∗
i where X̃i = Xi − 𝜃 i . When m ≪ n , p ≪ n to go from Ei to

Ei+1 requires O(n3) operations.
McBride (Applied Mathematics@UA) CKMS Oct 15, 2021 25 / 64



Kalman Filtering by Chadrasekhar-Kailath-Morf-Sidhu
(CKMS)

It turns out that for time-invariant (constant) parameters (Fi = F , Hi = H,
Gi = G, Qi = Q, Ri = R, and Si = S) a modified set of recursions wil achieve
the same as the Kalman recursions but with significantly less effort.

The key idea is that though Pi is full rank 𝛿Pi := Pi+1 − Pi can have low rank.

(since the difference of Hermitian matrices is Hermitian) write

𝛿Pi = LiMiL∗i
rewrite recursions in in terms of Li and Mi .
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Kalman Filtering CKM)

The Fast (CKMS) Kalman Recursions [1, p. 409]
The Kp,i and Re,i from the Kalman recursion above can be recursively
computed by the following set of coupled recursions, for i ≥ 0

Kp,i+1 = Kp,i − FLiR−1
r ,i L∗i H∗

Li+1 = FLi − Kp,iR−1
e,i HLi

Re,i+1 = Re,i − HLiR−1
r ,i L∗i H∗

Kp,i+1 = Kp,i − L∗i H∗R−1
e,i HLi

The recursion is initialized as follows: Kp,0 = FΠ0H∗ + GS and
Re,0 = R + HΠ0H∗. Then factor get L0 and Rr ,0

𝛿P0 := FΠ0F∗ + GQG∗ − Kp,0R−1
e,0K ∗

p,0 − Π0 =: −L0R−1
r ,0L∗0

where L0 is n × 𝛼 and Rr ,0 is 𝛼 × 𝛼, nonsingular and Hermitian.
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Spectral Factorization

Why factor the spectrum?
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Spectral Factorization
General

Wiener’s Matrix Spectral Factorization Theorem
If S : C→ Cd×d , satisfies,

S ∈ L1(𝜕D),
log detS ∈ L1(𝜕D), and
S(z) > 0 (positive definite) for (almost all) z ∈ 𝜕D.

Then there exists matrix functions S+(z) and S−(z), such that
S−(z) = S+∗(z−∗) and

S(z) = S+(z)S−(z) for z ∈ 𝜕D.

Furthermore, S+ is is an outer analytic matrix function from the Hardy space
H2.
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Spectral Factorization
More specific

More useful version of Spectral Factorization Theorem
If y is a mean zero, stationary, discrete time stochastic d-vector-valued process
that admits a rational z-spectrum Sy analytic on some annulus containing the
unit circle, and

Sy > 0 everywhere on 𝜕D.

Then there exists matrix functions S+(z) and S−(z), such
S+(z) is a d × d rational matrix function that is analytic on and inside the
unit circle,
S+−1(z) is analytic on and inside the unit circle.
S−(z) = S+∗(z−∗) and
S(z) = S+(z)S−(z).
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Spectral Factorization (Numerical)
Most Numerical algorithms assume S(z) is rational and has the form of a
Laurent Polynomial meaning it may be written as

S(z) =
m∑︁

n=−m
cnz−n with cn = c∗−n.

If this is assumed it may be shown that

S+(z) =
∑︁
n=1

Lnzn and S−(z) =
∑︁
n=1

L∗nz−n

(this is what we assume here) Algorithms that use Toeplitz matrices.
Bauer
Schur
Levinson-Durbin

Algorithms that use state-space formulations.
Riccati Equation
Kalman Filter
Chadrasekhar-Kailath-Morf-Sidhu (CKMS)
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Spectral Factorization
By Chadrasekhar-Kailath-Morf-Sidhu (CKMS)

Given SY (z), Yn ∈ Cd for n > −∞, (stationary discrete-time stochastic
process)

SY (z) =
∞∑︁

n=−∞
RY (n)z−n,

Now, if the decay of the covariance is sufficiently fast it is reasonable to
truncate SY (z) to a Laurent polynomial

S̃Y (z) =
m∑︁

n=−m
RY (n)z−n.

It is possible to construct [1, p. 488], Ỹn (finite state-spaces process) with

SỸ (z) = S̃Y (z)

,
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Spectral Factorization
By Chadrasekhar-Kailath-Morf-Sidhu (CKMS){

Xi+1 = FXi + Gvi
Ỹi = HXi + ui

provided that

F =

©­­­­­­«

0
I 0

I 0
. . .

. . .

I 0

ª®®®®®®¬
∈ Cmd×md

H =
(
0 . . . 0 I

)
∈ Cd×md

E
(
vi ui

) (
v∗j
u∗j

)
=

(
R𝛿ij S𝛿ij
S∗𝛿ij Q𝛿ij

)

Π = FΠF∗ + GQG∗

GS = N − FΠH∗

R = RY (0) − HΠH∗

Π = cov(Xi ,Xi) = EXiX∗
i

(
∈ Cm×m

)
N =

©­­­­«
RY (m)

RY (m − 1)
...

RY (1)

ª®®®®¬
McBride (Applied Mathematics@UA) CKMS Oct 15, 2021 33 / 64



Spectral Factorization
By Chadrasekhar-Kailath-Morf-Sidhu (CKMS)

So, we have a time-invariant, stationary statespace model that
approximates the original process in the sense that the z-spectra are close.

With this finite, linear state-space model we can use the Kalman filter to
produce an innovations model that will correspond to a casual and causally
invertable model filter for the process Ỹn and therefore the inverse constitute
a whitening filter. The result is well know and we choose the following
representation [2, p. 335].{

𝜃 i+1 = F𝜃 i + Kiei , 𝜃0 = 0
Ỹi = H𝜃 i + ei

where Eeie∗j = Re,1𝛿ij ,

Ki = (N − FΣiH∗)R−1
e,i , Re,i = RY [0] − HΣiH∗, and

Σi+1 = FΣiF∗ + KiRe,iK ∗
i Σi = E𝜃 i𝜃

∗
i
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Spectral Factorization
By Chadrasekhar-Kailath-Morf-Sidhu (CKMS)

We want to consider this system in steady state, but will Ki , Re,i converge?
Yes, this is a consequence of F being stable. And the limits can be
approximated using CKMS. Let K = limi Ki , R = limi Ri ,{

𝜃 i+1 = F𝜃 i + Kei
Ỹi = H𝜃 i + ei , Eei , e∗j = R𝛿ij

In our context this system may be represented as a convolution since

Ỹi = ei +
m∑︁

j=1
Kjei−1−m+j = (ℓ ∗ e)i

where
ℓ = (1,Km,Km−1, . . . ,K1)
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Spectral Factorization
By Chadrasekhar-Kailath-Morf-Sidhu (CKMS)

We have now a approximating MA(m) where the approximation is in the sense
of their z-spectra being close.
Observe that

SỸ (z) = Sℓ∗e(z) = L(z)Se(z)L∗(z−∗) = L(z)RL∗(z−∗)

where L is the z-transform of ℓ.

L(z) =
∞∑︁

k=1
ℓkz−k+1

And so,
SY (z) ≈ S̃Y (z) = SỸ (z) = L(z)RL∗(z−∗)

provides a spectral factorization.
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Example 1 (again): AR(2) Signal

Let us again consider the stationary autoregressive process of order 2,

Yn = (r1 + r2)Yn−1 − r1r2Yn−2 + Un, for n > −∞

for r1, r2 ∈ {z : |z | < 1} and Un are i.i.d. standard normal random variables.

We already computed the z-spectrum. as follows

SY (z) =
1

(1 − r1z−1) (1 − r2z−1) (1 − r∗1z) (1 − r∗2z)

Lets compute the spectral factor.

L(z) = 1
(1 − r1z−1) (1 − r2z−1)

=

( ∞∑︁
n=0

rn
1 z−n

) ( ∞∑︁
n=0

rn
2 z−n

)
observe that L(z)L(z−∗) = SY (z) and that L(z) is minimum-phase.
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Example 1: AR(2) Signal
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Example 1: AR(2) Signal
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Example 1: AR(2) Signal
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Example 2 (again): AR(10) Signal
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Example 2: AR(10) Signal
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Whitening

Recall that spectral factorization algorithm produced a modeling filter L(Z)
with impulse response ℓ. This filter was minimum-phase.

e
L(z)
−−−→ y y

L(z)−1

−−−−−→ e

The inverse of the modeling filter is a whitening filter.
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A word about DFT
For the DFT which is used frequently in this work I use fft from FFTW.jl
which is a Julia wrapper for the FFTW library written in C.
Here is what it does:

vk = fft(u)k =

N∑︁
j=1

uje−
2𝜋 i
N (j−1) (k−1)

uj = ifft(v)j =
1
N

N∑︁
k=1

vke
2𝜋 i
N (k−1) (j−1)

Here is why I use it so much:
Suppose we have the function S(z) = ∑N

j=1 cjz−(j−1) which we wish to evaluate
at N equally-spaced, unit-circle points zk = e

2𝜋 i
N (k−1) for k = 1, . . . ,N. We

need only use fft to get

S(zk) =
N∑︁

j=1
cje−

2𝜋 i
N (j−1) (k−1) = fft(c)k .
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Whitening
So, given a causal finite impulse response (FIR) filter ℓ, it’s transfer function
L(z) evaluated at Nex evenly distributed points on the unit circle is the array(

L(z) : z = e2𝜋ik/Nex for k = 0, . . . ,Nex − 1
)
=

fft([ℓ;zeros(Nex-length(ℓ))])

The first entry corresponds to L(1) and the points go counterclockwise.
So, to get an approximate inverse of an causal FIR a filter.
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Example 1: AR(2)

Let us yet again consider the stationary autoregressive process of order 2,

Yn = (r1 + r2)Yn−1 − r1r2Yn−2 + Un, for n > −∞

for r1, r2 ∈ {z : |z | < 1} and Un are i.i.d. standard normal random variables.
Clearly, w = (1,−(r1 + r2), r1r2) is a whitening filter. That is

(w ★ Y )n = Yn − (r1 + r2)Yn−1 + r1r2Yn−2 = Un
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Example 1: AR(2)
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Example 1: AR(2)
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Example 2: AR(10)
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Example 2: AR(10)
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Example 2: AR(10)

This did not work well.

Any suggestions?

Should I whiten again?
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Example 2: AR(10)
So, I whitened again.
Meaning I took the “whitened” processes as input and using the CKMS
spectral factoring algorithm a second time got a second whitening filter.
LetW denote the operator from the space of signals to their numerical
approximate causal FIR whitening filter, with a specified number of taps.

W[Y ] = w (1)

Y (1)
n = (w (1) ★ Y )n first whitening

W
[
Y (1)

]
= w (2)

Y (2)
n =

(
w (2) ★ Y (1)

)
n

second whitening

=

(
(w (2) ★w (1) ) ★ Y

)
n

So let w = w (2) ★w (1)
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Example 2: AR(10)

Possible explanation: This is on going. There are details, features in the
spectrum of some processes that are not resolved by the smoothed
periodogram (which are used in the whitening algorithm), given limited
samples.

Those features seem to be in the data still.

When I whiten I clear out some of the distracting (more apparent features)
features and the heretofore hidden features are now accessible to the smoothed
periodogram estimate.
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Example 3: KSE

I first saw this while trying to whiten a KSE solution.

The Kuromoto-Sivishinsky equation (KSE) can be written as follows

ut + uux + uxx + uxxxx = 0

with u(x + L, t) = u(x, t) for all x ∈ R and t > 0. And with u(x, 0) = g(x).
Now, we use a fourier series to rewrite the KSE is Fourier space. Doing so
gives

¤̂uk = (q2
k − q4

k )ûk −
iqk

2

∞∑︁
ℓ=−∞

ûℓ ûk−ℓ (1)

Here, qk = 2𝜋
L k. Note the trick: uux = 1

2
(
u2)

x .
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Example 3: KSE
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Spectrum estimation by a modeling filter

Here is the plan

Then take the master modeling filter and compute the absolute square of its
transfer function.
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Example 2: AR(10)
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Thank you!

Ali H Sayed and Thomas Kailath.
A survey of spectral factorization methods.
Numerical linear algebra with applications, 8(6-7):467–496, 2001.

Thomas Kailath, Ali H Sayed, and Babak Hassibi.
Linear estimation.
Number BOOK. Prentice Hall, 2000.
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