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The Problem

Many important models today contemplate
large number of degrees of freedom
across many orders of magnitude in space and time, without sharp scale
separation.

Examples: Power flow on large grids, neural activity in the brain, weather
forecasting, etc.

Some tasks require repeated model runs such as for
Uncertainty quantification
Optimization and control

Commonly, only a relatively small number of variables are of direct interest or
even observable.
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Goal and Difficulties

The goal is then to find reduced order models, which include only the
variables of interest (resolved variables), capable of finite time forecasting as
well as reproducing long-time statistics like correlation functions and
marginals of stationary distributions, at lower computational costs.

How can the effect of unresolved variables be approximated by using the
resolved variables and stochastic terms.

Unlike under situations with sharp scale separation,
memory (marginals of Markov process may not be Markov) and
noise effects

must be accounted for in many applications.
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Some Relevant Signal Processing Theory
Basic terminology

The object of interest are signals, realizations from a stochastic process.

We will focus on discrete time.

Some terms
A (linear) filter is in this talk a sequence of deterministic elements hn,k ,
n, k > −∞ that operates on a signal by way of convolution.

ŷn = (y★ hn, ·)n =

∞∑︁
k=−∞

hn,k · yn−k

A linear filter is time-invariant if hn,k has no dependence on n (used
above). So, hn,k = hk

A linear time-invariant filter is causal if hk = 0 for k < 0.
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Some Relevant Signal Processing Theory
Basic terminology

A stochastic process xt is (wide sense) stationary if
m(t) = Ext = constant and
Rx(t, s) = E

[
(xt − Ext) (xs − Exs)∗

]
= Rx(t − s).

The autocovariance of a stationary process xt is the function

Rx(t − s) = E
[
(xt − Ext) (xs − Exs)∗

]
.

Observe if xt is vector-valued then the autocovariance is matrix valued.
Rx(0) ≥ 0 (positive definite)
Rx(t) = Rx(−t)∗
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Some Relevant Signal Processing Theory
Basic terminology

Two stochastic processes xt and yt are jointly stationary if the process
ut = (xt , yt) is stationary. This means Ru(t − s) has a block representation

Ru(t − s) =
(
E
[
(xt − Ext) (xs − Exs)∗

]
E
[
(xt − Ext) (ys − Eys)∗

]
E
[
(yt − Eyt) (xs − Exs)∗

]
E
[
(yt − Eyt) (ys − Eys)∗

] )
=:

(
Rx(t − s) Rxy(t − s)
Ryx(t − s) Ry(t − s)

)
The cross-covariance of two jointly stationary processes xt , yt is the function

Ryx(t − s) = E
[
(yt − Eyt) (xs − Exs)∗

]
.

Observe that
Ryx(t − s) = R∗

yx(s − t)
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Some Relevant Signal Processing Theory
Basic terminology

The spectral density of a stationary discrete-time process xn is the function

Ŝx(𝜔) =
∞∑︁

n=−∞
Rx(n)e−i𝜔n

Since Rx(n) = Rx(−n)∗, Ŝx(𝜔) ∈ R for all 𝜔 ∈ R,
in fact Ŝx(𝜔) ≥ 0 for all 𝜔 ∈ R.

The z-spectrum of a stationary discrete-time process xt is the function

Sx(z) =
∞∑︁

n=−∞
Rx(n)z−n (

= Z{Rx(n)}
)

Sx(z) is positive semi-definite on the unit circle.
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Some Relevant Signal Processing Theory
Basic terminology

The z-cross-spectrum of two jointly stationary discrete-time processes yn and
xn is the function

Syx(z) =
∞∑︁

n=−∞
Ryx(n)z−n =

[
Sxy

(
1
z∗

)]∗
= S∗

xy(z−∗)
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Some Relevant Signal Processing Theory
Useful tools: z-transform

For a time series x = (xn, n ≥ 0) we define the z-transform of x by

X (z) =
∞∑︁

n=0
xnz−n = Z{xn}

Here are some properties:

Z{xn+1} =
∞∑︁

n=0
xn+1z−n =

∞∑︁
n=1

xnz−n+1 = z

( ∞∑︁
n=0

xnz−n − x0

)
= z (X (z) − x0)

Z{xn−k} =
∞∑︁

n=0
xn−kz−n =

∞∑︁
n=−k

xnz−n−k = z−k

( ∞∑︁
n=0

xnz−n

)
= z−kX (z)
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Some Relevant Signal Processing Theory
Useful tools: z-transform

(more useful properties)

xn = Z−1{X (z)} = 1
2𝜋i

∫
C

X (z)zn−1 dz

Z{(x ★ y)n} = Z
{ ∞∑︁

k=0
xn−k · yk

}
=

∞∑︁
n=0

( ∞∑︁
k=0

xn−k · yk

)
z−n

=

∞∑︁
k=0

∞∑︁
n=0

xn−kz−n · yk

=
∑︁
k=0

( ∞∑︁
n=0

xnz−n

)
· ykz−k

=

( ∞∑︁
n=0

xnz−n

)
·
(∑︁

k=0
ykz−k

)
= X (z) · Y (z).

Keep in mind that this is true
for matrix and/or vector-valued
time series in which the multi-
plication makes sense.
McBride (Applied Mathematics@UA) DDMR by Wiener Projection Mar 6, 2020 11 / 42



Some Relevant Signal Processing Theory
Useful tools: z-transform

(more useful properties)

xn = Z−1{X (z)} = 1
2𝜋i

∫
C

X (z)zn−1 dz

Z{(x ★ y)n} = Z
{ ∞∑︁

k=0
xn−k · yk

}
=

∞∑︁
n=0

( ∞∑︁
k=0

xn−k · yk

)
z−n

=

∞∑︁
k=0

∞∑︁
n=0

xn−kz−n · yk

=
∑︁
k=0

( ∞∑︁
n=0

xnz−n

)
· ykz−k

=

( ∞∑︁
n=0

xnz−n

)
·
(∑︁

k=0
ykz−k

)
= X (z) · Y (z).

Keep in mind that this is true
for matrix and/or vector-valued
time series in which the multi-
plication makes sense.
McBride (Applied Mathematics@UA) DDMR by Wiener Projection Mar 6, 2020 11 / 42



Some Relevant Signal Processing Theory
Useful tools: Properties of z-spectrum

If x and y are two stationary processes, then

Sx+y(z) = Sx(z) + Sxy(z) + Syx(z) + Sy(z)

If x and y are uncorrelated Syx(z) = 0 and

Sx+y(z) = Sx(z) + Sy(z)

If un ∼ N (0, 𝜎u) then

Ru(n) = 𝜎2
u𝛿(n)

Su(z) = 𝜎2
u

McBride (Applied Mathematics@UA) DDMR by Wiener Projection Mar 6, 2020 12 / 42



Some Relevant Signal Processing Theory
Useful tools: Properties of z-spectrum

Suppose xn is obtained from a stationary signal yn by passing it through a
linear time-invariant filter wn, so xn = (y★w)n .
Then, by the convolution theorem,

Syx(z) = Sy(z)W ∗(z−∗)

and
Sx(z) = W (z)Sy(z)W ∗(z−∗)

where

W (z) = Z{wn} =
∞∑︁

n=−∞
wnz−n

and is called the transfer function of the filter w.
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Spectral Factorization
General

Wiener’s Matrix Spectral Factorization Theorem
If S : C→ Cd×d , satisfies,

S ∈ L1(𝜕D),
log detS ∈ L1(𝜕D), and
S(z) > 0 (positive definite) for (almost all) z ∈ 𝜕D.

Then there exists matrix functions S+(z) and S−(z), such that
S−(z) = S+∗(z−∗) and

S(z) = S+(z)S−(z) for z ∈ 𝜕D.

Furthermore, S+ is is an outer analytic matrix function from the Hardy space
H2.
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Spectral Factorization
More specific

More useful version of Spectral Factorization Theorem
If y is a mean zero, stationary, discrete time stochastic d-vector-valued process
that admits a rational z-spectrum Sy analytic on some annulus containing the
unit circle, and

Sy > 0 everywhere on 𝜕D.

Then there exists matrix functions S+(z) and S−(z), such
S+(z) is a d × d rational matrix function that is analytic on and inside the
unit circle,
S+−1(z) is analytic on and inside the unit circle.
S−(z) = S+∗(z−∗) and
S(z) = S+(z)S−(z).
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Spectral Factorization
Numerical

Most Numerical algorithms assume S(z) is rational and has the form of a
Laurent Polynomial meaning it may be written as

S(z) =
m∑︁

n=−m
cnz−n with cn = c∗−n.

If this is assumed it may be shown that

S+(z) =
∑︁
n=1

Lnzn and S−(z) =
∑︁
n=1

L∗nz−n

(this is what we assume here) Algorithms that use Toeplitz matrices.
Bauer
Schur
Levinson-Durbin

Algorithms that use State Space formulations.
Riccati Equation
Kalman Filter
Chadrasekhar-Kailath-Morf-Sidhu (CKMS)
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Spectral Factorization
Numerical

Recently Analgroithm that imposes no more than the general theorem
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Wiener Filter

Given two stationary processes xn,yn The Wiener Filter computes a linear
least square estimate ŷn of a process yn given xn, for this reason

yn is called the signal,
xn are called the predictors.

This means we seek an h such that

E‖yn − (x★ h)n‖2 = minimum

In our case we want to require hn to be
causal (meaning hn = 0 for n < 0)
rapid decay (so that efficiency is gained)
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Wiener Filter
How it works (noncausal)

We assume we have it, but that h was not assumed to be causal. Then

0 = E
[
(yn − ŷn) (xm)

]
= E

[
(yn − (h★ x)n) (xm)∗

]
This implies

Eynx∗m = E
∞∑︁

k=−∞
hkxn−kx∗m =

∞∑︁
k=−∞

hkExn−kx∗m

or rather (with relabeling n − m ↦→ n)

Ryx(n) =
∞∑︁

k=−∞
hkRx(n − k)

The form of RHS suggest use of the z-transform.
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Wiener Filter
How it works (noncausal)

Applying the z-transform to both sides gives

Syx(z) = H (z)Sx(z)

where

H (z) = Z{hn} =
∞∑︁

n=−∞
hnz−n

So,
H (z) = Syx(z)S−1

x (z)

we then apply the inverse z-transform to recover h

hn =
1

2𝜋i

∫
C

Syx(z)S−1
x (z)zn−1 dz
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Wiener Filter
How it works (causal)

If we require that h is causal this is more difficult. Then

0 = E
[
(yn − ŷn) (xm)

]
= E

[
(yn − (h★ x)n) (xm)∗

]
only for m ≤ n

This implies

Eynx∗m = E
∞∑︁

k=−∞
hkxn−kx∗m =

∞∑︁
k=−∞

hkExn−kx∗m only for m ≤ n

or rather (with relabeling n − m ↦→ n)

Ryx(n) =
∞∑︁

k=−∞
hkRx(n − k) only for n ≥ 0

The form of RHS suggest use of the z-transform. But we can’t!
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Wiener Filter
How it works (causal)

However observe that for

gn = Ryx(n) −
∞∑︁

k=−∞
hkRx(n − k)

g is strictly anti-casual since gn = 0 when n ≥ 0. Now apply the z-transform to
both sides. We get

G(z) = Syx(z) − H (z)Sx(z)
Now apply the spectral factorization to Sx(z) And proceed as follows

G(z) = Syx(z) − H (z)S−
x (z)S+

x (z)

and observe when we apply the inverse

G(z)S+−1
x (z)︸          ︷︷          ︸

strictly anti−causal

= Syx(z)S+−1
x (z)︸            ︷︷            ︸

mixed

−H (z)S−
x (z)︸       ︷︷       ︸

causal
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Wiener Filter
How it works (causal)

And so
H (z) =

{
Syx(z)S+−1

x (z)
}
+

S−−1
x (z)
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This Approach

Given a full model
Xn = F (Xn)

with resolved variables collected in xn, select functions 𝜓 (i) (x) (informed by
model) on reduced state variables.

𝜓(x) =
(
𝜓 (0) (x)

���𝜓 (1) (x)
��� · · · ���𝜓 (a)

)
and 𝜓k = 𝜓(xk).

The reduced model we purpose is of the form,

xn+1 =

∞∑︁
k=0

𝜓k · hn−k + bn+1

We use the data to infer hk and bn (described briefly below).
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How to solve

Dr. Kevin Lin and Dr. Fei Lu solves in time domain, using an iterative
optimization algorithm.

This study investigates computing the Wiener filter by spectral methods (that
is, employing information like the power spectra Syx and Sx). This is a direct
method requiring no iterative optimization

Advantages:
Quicker
more accurate (?)
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Example 1: MA(1) Signal, Additive WN

Let y ∼ MA(1) with r ∈ R have the form

yn = un − run−1 for n > −∞

un ∼ N (0, 1) i.i.d. And let yn be a realization, this will be the signal. The
observations are

xn = yn + vn, for n > −∞.

we assume vn ∼ N (0, 𝜎v) i.i.d. and are uncorrelated with y.

To compute the Wiener filter we need Syx, S+
x , and S−

x . First, observe

Syx = Sy + Syv = Sy,

and
Sx = Sy+v,y+v = Sy + Syv + Svy + Sv = Sy + 𝜎2

v .
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Example 1: MA(1) Signal, Additive WN
(Just this once we compute it for clarity)

Sy =

∞∑︁
k=−∞

E[(un+k − run+k−1) (un − run−1)∗]z−k

=

∞∑︁
k=−∞

E[un+ku∗n − run+k−1u∗n − run+ku∗n−1 + r2un+k−1u∗n−1]z
−k

=

∞∑︁
k=−∞

(
𝛿(k) − r𝛿(k − 1) − r𝛿(k + 1) + r2𝛿(k)

)
z−k

= 1 + r2 − rz−1 − rz
(

= (1 − rz) (1 − rz−1)
)
.

So, Syx(z) = (1 − rz) (1 − rz−1) and

Sx(z) = 1 + r2 + 𝜎2
v − rz−1 − rz

=
r
𝜌
(1 − 𝜌z−1) (1 − 𝜌z)

For a suitably chosen 𝜌, |𝜌 | < 1.
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Example 1: MA(1) Signal, Additive WN
For S+

x and S−
x we then get

S+
x (z) =

√︂
r
𝜌
(1 − 𝜌z) and S−

x (z) =
√︂

r
𝜌
(1 − 𝜌z−1).

Putting this together we get
Syx(z)
S+

x (z)
=

1 + r2 − rz−1 − rz√︃
r
𝜌
(1 − 𝜌z)

=

√︂
𝜌

r
(1 + r2 − rz−1 − rz)

∞∑︁
n=0

(𝜌z)n

= −√𝜌rz−1 +
√︂

𝜌

r
(1 + r2) − 𝜌

√
𝜌r +

∞∑︁
n=1

bnzn.

Which means {
Syx(z)
S+

x (z)

}
+
= −√𝜌rz−1 +

√︂
𝜌

r
(1 + r2) − 𝜌

√
𝜌r .
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Example 1: MA(1) Signal, Additive WN

H (z) = 1
S−

x (z)

{
Syx(z)
S+

x (z)

}
+
=

1√︃
r
𝜌
(1 − 𝜌z−1)

(
√
𝜌rz−1 +

√︂
𝜌

r
(1 + r2) − 𝜌

√
𝜌r

)
=

[
1 + r2

r
𝜌 − 𝜌2

]
+

∞∑︁
n=1

𝜌n
[
1 + r2

r
𝜌 − 𝜌2 − 1

]
z−n

If we let d =
1 + r2

r
𝜌 − 𝜌2, then

H (z) = d +
∞∑︁

n=1
𝜌n(d − 1)z−n

And the causal filter h = (hn, n > −∞) is
hn = 0 if n < 0
hn = d if n = 0
hn = 𝜌n(d − 1) if n > 0
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Example 1: MA(1) Signal, Additive WN

Here is a run, with r = 10, 𝜎v = 10. The trajectory has 106 steps after
discarding 103 steps.

Left: A window of the time series for the signal (orange), the predictors (light
gray), the estimated signal using the analytic and numerical Wiener filter (red,
black).
Right: The covariance between errors (red from analytic filter, black from
numerical) and predictors (observations).
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Example 2: MA(2) Signal, Additive WN

For the signal in this example we use the MA(2) process,

yn = un + r1un−1 + r2un−2, for n > −∞

where r1, r2 ∈ R. The observations will again simply be the signal with an
additive white noise,

xn = yn + vn, for n > −∞.

We assume that v = (vn, n > −∞) is uncorrelated with y.

Skipping ahead we have

Syx = 1 + r2
1 + r2

2 + (r1 + r1r2) (z + z−1) + r2(z2 + z−2),

S+
x (z) =

√︂
r2

𝜌1𝜌2
(1−𝜌1z) (1−𝜌2z) and S−

x (z) =
√︂

r2

𝜌1𝜌2
(1−𝜌1z−1) (1−𝜌2z−1).
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Example 2: MA(2) Signal, Additive WN

H (z) = 1
S−

x (z)

{
Syx(z)
S+

x (z)

}
+
=

√︃
r2

𝜌1𝜌2
(𝛼2z−2 + 𝛼1z−1 + 𝛼0)√︃

r2
𝜌1𝜌2

(1 − 𝜌1z−1) (1 − 𝜌2z−1)

= (𝛼2z−2 + 𝛼1z−1 + 𝛼0)
( ∞∑︁

n=0
𝜌n

1z−n

) ( ∞∑︁
m=0

𝜌m
2 z−m

)
= 𝛼0𝛼(0) + [𝛼0𝛼(1) + 𝛼1𝛼(0)]z−1

+
∞∑︁

n=2
[𝛼0𝛼(n) + 𝛼1𝛼(n − 1) + 𝛼2𝛼(n − 2)]z−n

where 𝛼(n) =
n∑︁

k=0
𝜌n−k

1 𝜌k
2 and

𝛼0 =
𝜌1𝜌2

r2

[
r2(𝜌2

1 + 𝜌2
2 + 𝜌1𝜌2) + (r1 + r1r2) (𝜌1 + 𝜌2) + 1 + r2

1 + r2
2
]
,

𝛼1 =
𝜌1𝜌2

r2

[
r2(𝜌1 + 𝜌2) + r1 + r1r2

]
, 𝛼2 =

𝜌1𝜌2

r2
r2.
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Example 2: MA(2) Signal, Additive WN

And the causal filter h = (hn, n > −∞) is

hn = 0 if n < 0
hn = 𝛼0𝛼(0) if n = 0
hn = 𝛼0𝛼(1) + 𝛼1𝛼(0) if n = 1
hn = 𝛼0𝛼(n) + 𝛼1𝛼(n − 1) + 𝛼2𝛼(n − 2) if n ≥ 2
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Example 2: MA(2) Signal, Additive WN
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Example 3: AR(2) Signal, Additive WN

Let us consider the stationary autoregressive process of order 2,

yn = (r1 + r2)yn−1 − r1r2yn−2 + un, for n > −∞

for r1, r2 ∈ {z : |z | < 1}.

Skipping way ahead we have

Syx =
1

(1 − r1z−1) (1 − r2z−1) (1 − r∗1z) (1 − r∗2z)
,

S+
x (z) =

√︄
𝜎2

v
r∗1 r∗2
𝜌∗1𝜌

∗
2

(1 − 𝜌∗1z) (1 − 𝜌∗2z)
(1 − r∗1z) (1 − r∗2z) ,

S−
x (z) =

√︄
𝜎2

v
r∗1 r∗2
𝜌∗1𝜌

∗
2

(1 − 𝜌1z−1) (1 − 𝜌2z−1)
(1 − r1z−1) (1 − r2z−1)

.
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Example 3: AR(2) Signal, Additive WN
And the causal filter h = (hn, n > −∞) is

hn = 0 if n < 0
hn = 𝜙(0) if n = 0
hn = 𝜙(1) − 𝜙(0) (r1 + r2) if n = 1
hn = 𝜙(n) − (r1 + r2)𝜙(n − 1) + r1r2𝜙(n − 2) if n ≥ 2

Where

𝜙(n) = 𝜙2
0

n∑︁
k=0

𝛾(n − k)𝛼(k), 𝛼(n) =
n∑︁

k=0
𝜌n−k

1 𝜌k
2, 𝛽(n) =

n∑︁
k=0

rn−k
1 rk

2 ,

and

𝛾(n) =


∞∑︁

k=0
𝛼∗(k − n)𝛽(k) n ≤ 0

∞∑︁
k=0

𝛼∗(k)𝛽(k + n) n > 0
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Example 3: AR(2)) Signal, Additive WN

Here is a run, with r1, r2 = .5, .95, 𝜎v = 4. The trajectory has 106 steps after
discarding 103 steps.

Left: A window of the time series for the signal (orange), the predictors (light
gray), the estimated signal using the analytic and numerical Wiener filter (red,
black).
Right: The covariance between errors (red from analytic filter, black from
numerical) and predictors (observations).
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Example 4: AR(2) Signal, Filtered, Ad. WN
Let us consider again the stationary autoregressive process of order 2,

yn = (r1 + r2)yn−1 − r1r2yn−2 + un, for n > −∞

for r1, r2 ∈ {z : |z | < 1}. This time however, we define the observations to be
the signal y operated upon by a finite impulse response time invariant filter w
with additive white noise.

xn = (w ∗ y)n + vn, for n > −∞.

For simplicity let
w = (. . . , 0, 1 ,w1,w2, 0, . . . ),

where the box indicate the element indexed by 0 and w1,w2 ∈ R, then write

W (z) =
∞∑︁

k=−∞
wkz−k = 1 + w1z−1 + w2z−2.
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Example 4: AR(2) Signal, Filtered, Ad. WN

Observe that

Syx(z) = Sy(z)W ∗(z−∗) and Sx = W (z)Sy(z)W ∗(z−∗) + 𝜎2
v .

So,

Syx(z) =
1 + w1z + w2z2

(1 − r1z−1) (1 − r2z−1) (1 − r∗1z) (1 − r∗2z)

and

Sx(z) =
w2 + 𝜎2

v r∗1 r∗2
𝜌∗1𝜌

∗
2

·
(1 − 𝜌1z−1) (1 − 𝜌2z−1) (1 − 𝜌∗1z) (1 − 𝜌∗2z)
(1 − r1z−1) (1 − r2z−1) (1 − r∗1z) (1 − r∗2z)

For suitable 𝜌1, 𝜌2 (which depend on w1,w2)
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Example 4: AR(2) Signal, Filtered, Ad. WN

So, the causal filter h = (hn, n > −∞) is

hn = 0 if n < 0
hn = 𝜓(0) if n = 0
hn = 𝜓(1) − 𝜓(0) (r1 + r2) if n = 1
hn = 𝜓(n) − (r1 + r2)𝜓(n − 1) + r1r2𝜓(n − 2) if n ≥ 2

Where

𝜓(n) = 𝜓2
0

n∑︁
k=0

[
𝛾(n − k) + w1𝛾(n − k + 1) + w2𝛾(n − k + 2)

]
𝛼(k).
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Example 4: AR(2) Signal, Filtered, Ad. WN

Here is a run, with r1, r2 = −0.2, 0.9, w1,w2 = −0.1, 5, and 𝜎v = 1.1. The
trajectory has 106 steps after discarding 103 steps.

Left: A window of the time series for the signal (orange), the predictors (light
gray), the estimated signal using the analytic and numerical Wiener filter (red,
black).
Right: The covariance between errors (red from analytic filter, black from
numerical) and predictors (observations).
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Thank you!
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