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The Problem A‘ Program in Applied

Mathematics

Many important models today contemplate
@ large number of degrees of freedom

@ across many orders of magnitude in space and time, without sharp scale
separation.

Examples: Power flow on large grids, neural activity in the brain, weather
forecasting, etc.

Some tasks require repeated model runs such as for
@ Uncertainty quantification

@ Optimization and control

Commonly, only a relatively small number of variables are of direct interest or
even observable.
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Goal and Difficulties A‘ Mathematics

The goal is then to find reduced order models, which include only the
variables of interest (resolved variables), capable of finite time forecasting as
well as reproducing long-time statistics like correlation functions and
marginals of stationary distributions, at lower computational costs.

How can the effect of unresolved variables be approximated by using the
resolved variables and stochastic terms.

Unlike under situations with sharp scale separation,
@ memory (marginals of Markov process may not be Markov) and
@ noise effects

must be accounted for in many applications.
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Some Relevant Signal Processing Theory o
Program in Applied
Basic terminology A Mathematics

The object of interest are signals, realizations from a stochastic process.

We will focus on discrete time.

Some terms

@ A (linear) filter is in this talk a sequence of deterministic elements h ,
n,k > —oo that operates on a signal by way of convolution.

Yo=(y*xhn)n= Z hnk = Yn-x
k=—00

@ A linear filter is time-invariant if h, x has no dependence on n (used
above). So, h, x = hx

@ A linear time-invariant filter is causal if hy = 0 for k < 0.
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Some Relevant Signal Processing Theory o
Program in Applied
Basic terminology A‘ Mathematics

A stochastic process X; is (wide sense) stationary if
@ m(t) = Ex; = constant and
® Rx(t,s) = ]E[(xt — Exy)(xs — Exs)*] = Rx(t —s).

The autocovariance of a stationary process X; is the function

Ry(t—s) = E[(xt - Ex;)(xs — Exs)*].

Observe if x; is vector-valued then the autocovariance is matrix valued.
@ Rx(0) > 0 (positive definite)
@ Ax(t) = Ax(-1)"
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Some Relevant Signal Processing Theory

Basic terminology A

Two stochastic processes X; and y, are jointly stationary if the process
u; = (X, y;) is stationary. This means Ry (¢ — s) has a block representation

Program in Applied
Mathematics

Aot s) - (E[m ~ Bx) (%~ Bxo)"| E[(x ~ Ex) (3, —Eys>*])
! E|(y; — By)(xs — BExs)*| E[(y; — By)(ys — Bys)*]

_[Rx(t=5) Ryxy(t-5)
" \Ryx(t—5) Ry(t—s)

The cross-covariance of two jointly stationary processes X;, y; is the function

Ryx(t -s) = E[(Yt - EYt)(XS - Exs)*] .

Observe that

Ryx(t —s) = R;X(S -1
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Some Relevant Signal Processing Theory o
Program in Applied
Basic terminology A‘ Mathematics

The spectral density of a stationary discrete-time process X, is the function

Su(w) = ) Ru(me™"

n=—oo

Since Ry(n) = Ry(—n)*, Sx(w) e R forall w € R,
in fact Sx(w) > 0 for all w € R.

The z-spectrum of a stationary discrete-time process X; is the function

Sx(@)= ), Amz™" (=Z{R(n)})

Sx(2) is positive semi-definite on the unit circle.
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Some Relevant Signal Processing Theory o
Program in Applied
Basic terminology A Mathematics

The z-cross-spectrum of two jointly stationary discrete-time processes y,, and
X, is the function

Syx(z) = Z Ryx(n)z_n = [Sxy (21_*)] = ;y(z_*)
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Some Relevant Signal Processing Theory

] A Program in Applied
Useful tools: z-transform .| Mathematics

For a time series X = (xp, n > 0) we define the z-transform of x by

X(2) = ) %z = Z{xn}
n=0

Here are some properties:

Z{xps1} = an+1z_n = anz—nﬂ =z (Z XpZ " —Xo| =2 (X(2) = xo)
n=0 n=1 n=0
Z{xnk} = Z Xp_x2 " = Z xpz K = 27K (Z xnz_”) =z7"X(z2)
n=0 n=—-k n=0

McBride (Applied Mathemati;
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Some Relevant Signal Processing Theory

‘ Program in Applied
Useful tools: z-transform é&

Mathematics

(more useful properties)

xn=2Z "X(2)} = % /CX(z)z”_1 dz

1

I
—_—3
e
&
N
3
~
B
N
=

A =X2) - Y(2).
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Some Relevant Signal Processing Theory

‘ Program in Applied
Useful tools: z-transform é&

Mathematics

(more useful properties)

xn=2Z "X(2)} = % /CX(z)z"_1 dz

1

gl

ES
I
o

Z{(X *y)n} =Z {an—k ‘Yk} = Xn—k -yk) z "
k=0

—-n
Xn-kZ " Yk

e 1DV
Me

k=0 n=0
= (Z an‘”) Yz
k=0 \n=0
Keep in mind that this is true o
for matrix and/or vector-valued = Z XnZ _n) : (Z YkZ _k)
time series in which the multi- n=0 k=0

plication makes sense. A =X2) Y ().
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Some Relevant Signal Processing Theory

) Program in Applied
Useful tools: Properties of z-spectrum é &

Mathematics

If x and y are two stationary processes, then

Sx+y(z) =Sx(2) + Sxy(z) + Syx(z) + Sy(z)

If x and y are uncorrelated Syx(z) = 0 and

Sx+y(z) = Sx(z) + Sy(z)

If u, ~ N(0, oy) then

Ru(n) = afé(n)

Su(z) = 0'5
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Some Relevant Signal Processing Theory o
Program in Applied
Useful tools: Properties of z-spectrum A‘ Mathematics

Suppose x, is obtained from a stationary signal y,, by passing it through a
linear time-invariant filter w,, so .
Then, by the convolution theorem,

Syx(2) = Sy(z2)W*(z™)
and
Sx(2) = W(2)Sy(z2)W*(z7™)
where

W(z) = Z{wn} = ) wnz™"

n=—oo

and is called the transfer function of the filter w.
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Spectral Factorization
General A

Program in Applied
Mathematics

Wiener’s Matrix Spectral Factorization Theorem
If S : C — C99 gatisfies,
e SelL'(oD),
o logdetS € L'(0D), and
@ S(z) > 0 (positive definite) for (almost all) z € dD.

Then there exists matrix functions S*(z) and S™(z), such that
S (z) =S*(z7*) and

S(z) =S*(2)S (2) for z € OD.

Furthermore, S* is is an outer analytic matrix function from the Hardy space
Ho.
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Spectral Factorization -
Program in Applied
More specific A Mathematics

More useful version of Spectral Factorization Theorem
If y is a mean zero, stationary, discrete time stochastic d-vector-valued process
that admits a rational z-spectrum Sy analytic on some annulus containing the
unit circle, and

Sy >0 everywhere on 0D.
Then there exists matrix functions S*(z) and S™(z), such

@ S*(z) is a d x d rational matrix function that is analytic on and inside the
unit circle,

o ST (2)is analytic on and inside the unit circle.
@ S (2) =S*(z7) and
@ S(2) =S"(2)S (2).
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Spectral Factorization
Numerical A Mathematics

Most Numerical algorithms assume S(z) is rational and has the form of a
Laurent Polynomial meaning it may be written as

m
S(z) = Z cnz™" with ¢, = ¢*,,.
n=—m

If this is assumed it may be shown that

S*(2) = Z L,Z2" and S (2)= Z Lyz™"
n=1 n=1

(this is what we assume here) Algorithms that use Toeplitz matrices.
@ Bauer
@ Schur
@ Levinson-Durbin
Algorithms that use State Space formulations.
@ Riccati Equation

o Kalman Filter
Hath-Morf-Sidh@CR M)

DDMR by Wiener Projection Mar 6, 2020

. hadrasekinAg
McBride (Applied Mathemati;

Program in Applied

16/42



Spectral Factorization

Numerical

2318

gég Program in Applied
.| Mathematics

Recently Analgroithm that imposes no more than the general theorem

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 4, APRIL 2011

A New Method of Matrix Spectral Factorization

Gigla Janashia, Edem Lagvilava, and Lasha Ephremidze

Abstract—A new algorithm of matrix spectral factorization is
proposed which can be applied to compute an approximate spec-
tral factor of any positive definite matrix function which satisfies
the Paley-Wiener condition. !

Index Terms—Algorithms, matrix decomposition, spectral fac-
torization.

I. INTRODUCTION

PECTRAL factorization plays a prominent role in a wide
S range of fields in Communications, System Theory, Con-
trol Engineering and so on. In the scalar case arising for single
input and single output systems, the factorization problem is rel-
atively easy and several classical algorithms exist to tackle it
(see the survey paper [ 1]) together with the reliable information
on their software implementations [2]. There are also some re-
cent claims as to their improvement [3]. Matrix spectral factor-
ization which arises for multidimensional systems is essentially

DDMR by Wiener Projection

this process the decisive role is played by unitary matrix func-
tions of certain structure (see Theorem 1), which eliminates
many technical difficulties connected with computation. The ex-
plicit construction of such matrices given in the proof of The-
ential component of the algorithm. Recently, a
close relationship of these unitary matrix functions with com-
pactly supported wavelets has been discovered, which makes it
possible to construct compact wavelets in a fast and reliable way
and to completely parameterize them [8].

Preliminary numerical simulations confirm the potential of
the proposed algorithm (see Section VI).

The paper is organized as follows. In the next section, an
exact mathematical formulation of the problem is given. In
Section III, the notation used throughout the paper is intro-
duced. In Section IV, we provide a theoretical background
of the proposed method. In Section V, the computational
procedures of the new matrix spectral factorization algorithm
are described, and some illustrating examples of numerical

orem | is an e

Mar 6, 2020
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. . Program in Applied
Wiener Filter A‘ Maﬁlematicspp

Given two stationary processes Xp,y,, The Wiener Filter computes a linear
least square estimate ¥, of a process y, given X, for this reason

@ y, is called the signal,
@ X, are called the predictors.

This means we seek an h such that
Elly, — (X * h),||? = minimum

In our case we want to require h, to be
@ causal (meaning h, = 0 for n < 0)

@ rapid decay (so that efficiency is gained)
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Wiener Filter
Program in Applied
How it works (noncausal) A‘ Mathematics

We assume we have it, but that h was not assumed to be causal. Then

0 =E[(¥, — §) Xm)| =E[(y, = (h % X)n) (Xm)"]
This implies
Ey.x;, =E Z hXp_kX,, = Z hkExp_kX;,
k=—o0 k=—c0
or rather (with relabeling n — m — n)
Ryx(n) = )" hiRx(n = k)
k=—o00

The form of RHS suggest use of the z-transform.
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Wiener Filter
Program in Applied
How it works (noncausal) A‘ Mathematics

Applying the z-transform to both sides gives
Syx(z) = H(2)Sx(2)

where

H(z) = Z{ho} = ) oz

So,
H(z) = Syx(2)3§1 (2)

we then apply the inverse z-transform to recover h

1 _ _
h, = o /C Syx(2)S (2)2"" dz
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Wiener Filter

) Program in Applied
How it works (causal) A

Mathematics

If we require that h is causal this is more difficult. Then
0 = B[ (¥, ~ 9,) (%m)] = E[(¥p ~ (W% X)) (xm)"]  only form < n
This implies
Eyx;, =E Z hXp—kXy, = Z hxExp_kX;, only form<n
k=—o0 k=—c0
or rather (with relabeling n — m — n)

Ryx(n) = Z hxRx(n — k) only forn > 0

k=—c0

The form of RHS suggest use of the z-transform. But we can’t!
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Wiener Filter

) Program in Applied
How it works (causal) A

Mathematics

However observe that for

9n = Ryx(n) — Z hiRx(n — k)

k=—o00

g is strictly anti-casual since g, = 0 when n > 0. Now apply the z-transform to
both sides. We get

G(2) = Syx(2) — H(2)Sx(2)

Now apply the spectral factorization to Sx(z) And proceed as follows
G(2) = Syx(2) - H(2)S;(2)S5(2)

and observe when we apply the inverse

G(2)S*;(2) = Syx(2)S*y (2) —H(2)S5 (2)

strictly anti—causal mixed causal
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Wiener Filter
Program in Applied
How it works (causal) A‘ Mathematics

And so

H@) = {sn(255 @)} §7'(@)
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Program in Applied
Mathematics

This Approach A,

Given a full model
Xn=F (Xn)

with resolved variables collected in x,, select functions zﬁ(’) (x) (informed by
model) on reduced state variables.

w00 = (W@l V00| p)  and p=wn).

The reduced model we purpose is of the form,

[ee)
Xn+1 = Z Yk - hnk + &ne

k=0

We use the data to infer hx and &, (described briefly below).
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How to SOIVG A‘ Program in Applied

Mathematics

Dr. Kevin Lin and Dr. Fei Lu solves in time domain, using an iterative
optimization algorithm.

This study investigates computing the Wiener filter by spectral methods (that
is, employing information like the power spectra Sy, and Sy). This is a direct
method requiring no iterative optimization

Advantages:

@ Quicker

@ more accurate (?)
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Example 1: MA(1) Signal, Additive WN  J&, | Frogram in Applied

Lety ~ MA(1) with r € R have the form
Y, =Up— iy forn > —oo

u, ~ N(0,1) i.i.d. And let y, be a realization, this will be the signal. The
observations are
Xp = Yn + Vn, for n > —oo.

we assume v, ~ N(0, oy) i.i.d. and are uncorrelated with y.
To compute the Wiener filter we need Syx, Sy, and Sy. First, observe

Syx = Sy + Syv = Sy,

and

2
SX = Sy+v’y+v = Sy+8yv+SVy+Sv = Sy +0—V'

McBride (Applied Mathematics @UA) DDMR by Wiener Projection Mar 6, 2020
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Example 1: MA(1) Signal, Additive WN A

Mathematics

(Just this once we compute it for clarity)

Sy= > El(Unk — Mpsk—1)(Un = rp_1)*]z7*

k

s

(o)

*

* * * 2 -k
E[Un+kUy = Mpsk—1Up = MUnsicUp_y + M Unpc—1Uy_4]2

Ms

k

(o)

= Z (6(k) —ré(k — 1) — ré(k + 1) +r25(k))z ™
k=—o00

=1+r2—rz' =1z ( =0-r2(1=rz"" ).

So, Syx(2) = (1 —rz)(1 —rz"") and
Sx(2)=1+r2+c2 -1z —1z
r _
=—(1-pz")(1-p2)
0
For a suitably chosen p, |p| < 1. A
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Program in Applied
Mathematics

Example 1: MA(1) Signal, Additive WN A

For S} and S; we then get

Sx(2) = \/ZU —-pz) and  S((2) = \/ZU - pz ).
p P

Putting this together we get

Syx(z) 1+r2—rz7' —rz

Si(2) \/7(1 — p2)
= \/5(1 +r2 -z —rz2) i(pz)”

orz” +\/7(1+r2) p\/_+Z§nz

Which means

Sx(2)

McBride (Applied Mathematics @UA) DDMR by Wiener Projection Mar 6, 2020 28/42
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Program in Applied
Mathematics

Example 1: MA(1) Signal, Additive WN A

H(z) =

58] oo
S;(z){S;;(z) +_\/g(1—,02‘1) orz"' + |=(1+r%) — ppr
1+r i

—

1+r

p2 _ 1 z—n

2

1+r
If weletd = p — p?, then

H(z)=d+ ip”(d -1)z™"
n=1

And the causal filter h = (h,,n > —o0) is
h, =0 ifn<0
hn:d ifn=0
hp, =p"(d-1) ifn>0
A
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Example 1: MA(1) Signal, Additive WN  J&, | Frogram in Applied

Mathematics

Here is a run, with r = 10, oy = 10. The trajectory has 108 steps after
discarding 10° steps.

®
,
SR e B e S e S d
t 4
\ i
» \ i
1 i
N '.| v‘ i\ » i i
NER il “,\ s R . “ i
LA VANY BN Il Wy om gt Rl 1/ \ i
I Y NG \-\,\‘,I |I\‘ ,\,\,v"‘\ T Y \ ]
“ &R EAVACHIRVSY S |
1 ‘AR [
1 i ¥ i
v \! 3 ‘I ‘l
20 \ i\
Vi
1]
4 Vi
pred Y]
== 5_hat num \l,
4olf*++ sg_natana & sg_hat_num
sig o l® sonatan
39550 99960 %9970 59580 559950 1600000 3 g 3 G 5

Left: A window of the time series for the signal (orange), the predictors (light

gray), the estimated signal using the analytic and numerical Wiener filter (red,
black).

Right: The covariance between errors (red from analytic filter, black from
numerical) and predictors (observations).
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Program in Applied
Mathematics

Example 2: MA(2) Signal, Additive WN A

For the signal in this example we use the MA(2) process,
Yn = Up + rUp—q + ralp_o, forn > —o0

where ry, ro € R. The observations will again simply be the signal with an
additive white noise,

Xp = Yn + Vp, forn > —oo.
We assume that v = (v,,n > —o0) is uncorrelated with y.
Skipping ahead we have

Syx =1+ 412+ (1 +nr)(z+z7") +r (22 +272),

SH2) = \[—2—(1-p12)(1=pe2) and S5 (2) = \[—2—(1-p1z")(1=pzz")
pP1p2 P1pP2
A
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Program in Applied
Mathematics

Example 2: MA(2) Signal, Additive WN A

H(2)

1 Syx(z) p:zpz (CL’QZ_2 + 012_1 + CL’Q)
 S:(2) {SQ(Z) }

s (1= p1z7) (1 = p2z7)
= (wz 2+ o127 + ap) (Z p?z‘”) (Z p’;z_'")

n=0 m=0

= o (0) + [@oa(1) + a1 (0)]z"

+ i [aoa(n) + aya(n —1) + asa(n —2)]z7"

n=2

n
where a(n) = Z T ok and
k=0

P1P2
@ = — [r2(0% + P35 + p1p2) + (r1 + r1r2) (p1 + p2) +1 415 +15],
P1p2 PPz
aq = p [rg(p1+p2)+"1+f1f2], Qg = p .
5 2
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Program in Applied

Example 2: MA(2) Signal, Additive WN A

Mathematics
And the causal filter h = (h,,n > —o0) is
h,=0 ifn<0
hp = apa(0) ifn=0
h, = aga (1) + @1 a(0) ifn=1
hn = aga(n) + ara(n — 1) + axa(n —2) ifn>2
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Example 2: MA(2) Signal, Additive WN  J&, | Frogram in Applied

Here is a run, with r = 10, oy = 10. The trajectory has 108 steps after
discarding 10° steps.

pred ’ &= 5g_hat num

— = sig_hat_num @ sig_hatana

++ sig_hat ana
sg

\

N
0--0--._,._.--0--0-0
3 3 3

Of =0 — OO~

L
99950 999960 999970 999980 999950 1000000 3

Left: A window of the time series for the signal (orange), the predictors (light
gray), the estimated signal using the analytic and numerical Wiener filter (red,
black).

Right: The covariance between errors (red from analytic filter, black from
numerical) and predictors (observations).
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Program in Applied
Mathematics

Example 3: AR(2) Signal, Additive WN A

Let us consider the stationary autoregressive process of order 2,
Yo = (r+r2)yn1—=nryn2+Uy,  forn>-oco
forri,roe{z:|z| <1}.

Skipping way ahead we have

’
Syx = ,
Y (l-nz (1 -z (1 - riz)(1 - rj2)

§7(2) = +|o? riry (1-p32)(1 —p32)7
pipy (1 =riz)(1-r;2)

S5:(2) = o212 (1 =Pz )(1 = poz)
pipy (1=rz7)(1 —rz7")
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Program in Applied

Example 3: AR(2) Signal, Additive WN A

Mathematics
And the causal filter h = (h,,n > —o0) is
h,=0 ifn<0
hp = ¢(0) ifn=0
hn=¢(1) = ¢(0)(r1 +r2) ifn=1

hp=¢(n) = (r1 +r2)¢p(n—1) +rirz¢(n-2)  ifnx>2
Where

¢(n) = ¢g Zy(n — k)cy(k), g(n) - Zp’;*kpg’ ﬁ(n) — erfk k
k=0 k=0

ry,
k=0

and

i a*(k—mpB(k) n<o0
y(n) ={'S

et (k)ptk+n) n>0

k=0
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Example 3: AR(2)) Signal, Additive WN

A

Program in Applied
Mathematics

Here is a run, with r1,r2 = .5, .95, oy = 4. The trajectory has 108 steps after

discarding 102 steps.

-\

S ANER Y ,’ \
7 \ Py 2%

1y

v
o 3 1
[ Ney

o

% 7N

“

pred
== sig_hat_num
«++ sig_hat_ana
sig

AN

—

&= g hat_num
@ sg_hat_ana

9950 999960 999970 999980

999990 1000000

20 10 o 10 20

30 20

Left: A window of the time series for the signal (orange), the predictors (light
gray), the estimated signal using the analytic and numerical Wiener filter (red,

black).

Right: The covariance between errors (red from analytic filter, black from
numerical) and predictors (observations).
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Example 4: AR(2) Signal, Filtered, Ad. WNA‘ program in Applied
Let us consider again the stationary autoregressive process of order 2,
Yn = (r1 +12)yn—1 — rreyn-2 + Un, forn > —oo

for ri,ro € {z : |z| < 1}. This time however, we define the observations to be
the signal y operated upon by a finite impulse response time invariant filter w
with additive white noise.

Xp = (W Y)n+ Vp, forn > —oo.

For simplicity let
w= (...,O,,W1,W2,O,...),

where the box indicate the element indexed by 0 and wq, wo € R, then write

(o)
W(z) = Z Wiz K =1 +wizTt + woz 2.

k=—o00
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Example 4: AR(2) Signal, Filtered, Ad. WN/A,

Mathematics

Observe that

Syx(2) = Sy(2)W*(z™™) and Sx = W(z)Sy(z2)W*(z™") + o2,

So,
1+ Wiz + Woz?
SyX(z) = 1 1_1 2 % %
(1=—nz )1 -z —rjz2)(1 - r;2)
and
sy 2 M (1= (0 = ez (1 = pi2) (1 = )
b 0305 (1-—nzHY(1 -z -riz2)(1-r;2)

For suitable p1, po (which depend on wy, w»)
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Program in Applied

39/42



Program in Applied

Example 4: AR(2) Signal, Filtered, Ad. WN/A,

Mathematics

So, the causal filter h = (h,,n > —0) is

hn =0 ifn<0

hn = ¢/(0) ifn=0

hn =¥ (1) = (0)(ry +r2) ifn=1

hy = (n) = (ri + )y (n=1) +riray(n —2) ifn>2
Where

n
w(n) =y > [y(n—k)+wiy(n—k+1) +wyy(n—k+2)]a(k).
k=0

McBride (Applied Mathematics @UA)
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Example 4: AR(2) Signal, Filtered, Ad. WNJA, | Frogramin A

Here is a run, with ry,r» = -0.2,0.9, wy,w, = —0.1,5, and oy = 1.1. The
trajectory has 108 steps after discarding 10° steps.

A LG
INF .o -~ !

\ !

1

\
.

10

10 5 0 B

999950 999960 999970 959980 999950

Left: A window of the time series for the signal (orange), the predictors (light
gray), the estimated signal using the analytic and numerical Wiener filter (red,

black).
Right: The covariance between errors (red from analytic filter, black from

numerical) and predictors (observations).
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Thank you!
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