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Abstract—This manuscript is the first step towards building
a robust and efficient model reduction methodology to capture
transient dynamics in a transmission level electric power sys-
tem. Such dynamics is normally modeled on seconds-to-tens-of-
seconds time scales by the so-called swing equations, which are or-
dinary differential equations defined on a spatially discrete model
of the power grid. We suggest, following Seymlyen (1974) and
Thorpe, Seyler and Phadke (1999), to map the swing equations
onto a linear, inhomogeneous Partial Differential Equation (PDE)
of parabolic type in two space and one time dimensions with
time-independent coefficients and properly defined boundary
conditions. The continuous two-dimensional spatial domain is
defined by a geographical map of the area served by the
power grid, and associated with the PDE coefficients derived
from smoothed graph-Laplacian of susceptances, machine inertia
and damping. Inhomogeneous source terms represent spatially
distributed injection/consumption of power. We illustrate our
method on PanTaGruEl (Pan-European Transmission Grid and
ELectricity generation model) [1], [2]. We show that, when
properly coarse-grained, i.e. with the PDE coefficients and
source terms extracted from a spatial convolution procedure of
the respective discrete coefficients in the swing equations, the
resulting PDE reproduces faithfully and efficiently the original
swing dynamics. We finally discuss future extensions of this
work, where the presented PDE-based reduced modeling will
initialize a physics-informed machine learning approach for real-
time modeling, n−1 feasibility assessment and transient stability
analysis of power systems.

Index Terms—Power system dynamics, disturbance propaga-
tion, electromechanical waves, inter-area oscillations, continuum,
physics-informed machine learning

I. INTRODUCTION

This manuscript is focused on building a reduced – thus
computationally efficient – and sufficiently accurate model
describing the transient response of a transmission level elec-
tric power system to a significant perturbation – for example
the disconnection and/or re-connection of a large generator.
We consider transmission level power system dynamics on a
continental scale and focus on sub-minute transients on time
scales ranging from one second to few tens of seconds. We
follow an approach that is standard in power system studies
[3], [4], [5] and assume that the so-called swing equations,
giving the time-evolution of the voltage angles at all nodes
on the power grid, provide a sufficiently accurate represen-

tation of the power system dynamics within the considered
spatio-temporal scales. Stated differently in the language of
modern machine learning, the spatio-temporal integration of
the swing equations provide a high-fidelity representation of
the ground truth. There are two competing aspects of the swing
equations. On the one hand, they are based on physically
meaningful quantities and parameters such as line capacities,
machine inertia and damping. Accordingly they are expected
to correctly capture the physics of the system. On the other
hand, integrating these equations on a large, continental scale
grid can be computationally very expensive, even for a single
run corresponding to a specific initial condition. Obviously, it
becomes even more expensive if the task is to screen many
possible initial conditions, and often prohibitively expensive
when the screening need to be repeated numerous times,
testing many possible control actions. Model reduction in this
type of real-time, so-called “on-line” applications [6] comes as
a way to strike a balance between accuracy and computational
complexity. Central to this optimization is to keep in mind that
the transient dynamics of interest occurs over time scales up
to few tens of seconds while the goal is numerically resolve
all the multiple scenarios (of initial conditions and controls)
faster than real time.

How does model reduction work? In the current era
of deep learning, many model reduction techniques rely on
neural networks and other tools of modern data science and
machine learning, see e.g. [7], [8], [9], [10]. The idea is to
use the ground truth model – the swing equations in our case
– to produce dynamical data, and then to train a pre-selected
reduced model on these datasets to fine-tune the parameters of
the model. If the reduced model is of an application agnostic
type, as is customary in mainstream machine learning, the
scheme relies on very large datasets. However, recall that
running our ground truth model is computationally expensive.
Then, if producing the needed training datasets is not an
option, can we still hope to build a reliable reduced model?
Our only hope in this case is to inject the relevant, application-
specific information – in our case information about the power
system physics – into the model reduction framework. Physics
Informed Machine Learning (PIML) is the modern approach to
resolve the model reduction bottleneck – that is to compensate
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for the lack of data (typical of the on-line applications) by
building models that are aware of the underlying physics [11],
which may be expressed in terms of differential equations [12],
[13], [14]. (See also [15], [16] for discussion of the application
of PIML to power systems.)

Why is Partial Differential Equation (PDE) modeling a
sound option for power system model reduction? In this
manuscript, we propose a first step towards developing PIML
for general on-line applications and specifically advancing
model reduction of PIML applications to power systems, as
e.g. developed earlier by members of our team [16], [17].
Similarly to [15], we take advantage of the PIML approach and
construct an on-line framework for simulating power system
dynamics faster than real time. We are however aiming to
capture the transient dynamics in a very large, continental-
scale power system, a goal that has not been addressed by
any earlier related approach we are aware of. Accordingly, we
choose to build our reduced model on the continuous PDE
approach to modeling power system dynamics pioneered by
Semlyen [18] and later extended by Thorpe, Seyler and Phadke
[19] (see also [20]). These works were however restricted
to spatially-continuous one dimensional system, i.e. with 1+1
dimensional PDE. Our PDE approach to power system, to be
presented below, inherits all the relevant physics of the original
swing Ordinary Differential Equations (ODEs), accordingly
it is 2+1 dimensional. Thus it resolves power grid dynamics
over a spatially-continuous two-dimensional domain associ-
ated with the power system’s geographical area of service.
Approximating the swing ODEs by a PDE may seem strange at
first sight, as naively, this transition dramatically increases the
number of degrees of freedom. However, this naive thinking
is not quite right for a number of reasons. First, numerical
solutions of linear 2+1 dimensional PDE assumes spatial regu-
larization via two-dimensional grid, where the grid size can be
chosen according to the desired spatial resolution. Therefore,
the number of grid points may eventually be comparable of
even smaller than the number of nodes in the original grid.
Second, basic operations, such as matrix inversion, can be
numerically implemented much more efficiently on a regular
grid than on a complex meshed graph. Third, the number of
physical parameters in the original power grid model (line
capacities, machine inertia and damping coefficients) may
be reduced significantly within the PDE approach. Indeed,
within the reduced model, we want to faithfully capture only
the large-wavelength component of the swing dynamics. This
justifies using only a coarse-grained/filtered expression for all
the coefficients in the linear PDE, therefore representing the
coefficients via only a few long-wavelength harmonics.

Our Contribution: In this manuscript we make the first
steps towards a novel on-line methodology for multi-scenario
testing and control based on modeling the dynamics of a
large, continental scale power system within a novel 2+1
PDE modeling framework. We show how a properly coarse-
grained PDE model faithfully captures the power grid transient
responses to disturbances of a high fidelity model. Our model
reduction methodology is illustrated on the PanTaGruEl model

of the synchronous grid of continental Europe introduced in
[1], [2]. Specifically, PanTaGruEl simulates power flow and
swing equations with high fidelity to produce the ground truth
data. The latter in their turn are used to infer a spatially
continuous 2+1 dimensional PDE model. The quality of the
reconstruction is judged, first, by its ability to mimic power
system dynamics and, second, by a faithful reconstruction of
spatially coarse-grained and physically meaningful static –
spatial distribution of line impedances – and dynamic – spatial
distribution of damping and inertia – parameters. We conclude
the manuscript with a suggestion for a path towards using the
PDE based reduced modeling framework for efficient online
screening of multiple failure scenarios on large transmission
grids, faster than real time.

II. PROBLEM FORMULATION

A. Power Flow and Swing Equations (system of ODEs)

AC Power Flow (PF) equations describe steady distributions
of electric power flows over an AC power grid. The equations
connect complex power injections {si ≡ pi+ iqi} to complex
voltages {Vi ≡ vi exp(iθi)}, where pi, qi, vi and θi denote the
active and reactive power injections, and the voltage magnitude
and angle at node i ∈ V respectively:

pi =
∑
j

vivj

[
gij cos

(
θi − θj

)
+ bij sin

(
θi − θj

)]
, (1a)

qi =
∑
j

vivj

[
gij sin

(
θi − θj

)
− bij cos

(
θi − θj

)]
. (1b)

Here, bij and gij are elements of the susceptance and conduc-
tance matrices, see e.g. [3], [4], [5] for more details.

Suppose that a steady solution of the PF Eqs. (1) is
perturbed, for example by a fast disconnection and reconnec-
tion of a large generator or a load. In this particular case,
stabilization of voltage amplitudes to their pre-perturbation
values occurs within a few AC cycles, on a time scale of
tens of milliseconds. However, voltage angle relaxation takes
longer, and the transient dynamics of these angles on time
scale ranging up to few tens of seconds is governed by the
swing equations (see e.g. [4]). In their linearized form they
read

miθ̈i + diθ̇i = pi −
∑
j

vivjbij(θi − θj) , (2)

where the voltage amplitudes vi and vj are considered con-
stant, already stabilized to the steady-state solution of Eqs. (1)
and mi and di denote the inertia and the damping (i.e. primary
control) of the generators. Eq. (2) describes the relaxation
dynamics of voltage angles towards a steady-state solution,
θ̈i = θ̇i = 0, corresponding to the lossless, gij = 0,
linearized version of Eqs. (1a). Two comments are in order
here. First, the linearized approach used here is in practice
quite accurate to reproduce the transient dynamics following
not too strong perturbations. Nevertheless, the approach to be
presented below can be extended to the nonlinear case, with
(θi−θj)→ sin(θi−θj) in Eq. (2). Second, the swing equation
approach is not restricted to the just discussed case of a fast



disconnection-reconnection fault, but also captures the voltage
angle dynamics following a fault which is not immediately
cleared, such as the removal of a generator or a load without
reconnection. In such cases, the final, relaxed state is not bal-
anced, i.e.

∑
i pi 6= 0, and the power mismatch is compensated

by the second, damping term in Eq. (2), leading to an AC
frequency shift θ̇i = ωpf∀i, with

∑
i pi = ωpf

∑
i di.

In the next paragraph, we construct a reduced model by
mapping the discrete system of ODEs (2) into a continuous
PDE. Before we do that, we re-emphasize why a model reduc-
tion is needed at all. The motivation was lucidly expressed in
Ref. [21] as follows: “The focus is on the construction of low-
order models which closely approximate the global behavior
of the hybrid nonlinear system. There is a growing recognition
of the strong need for rapid and reliable computation of the
system dynamics.” Comprehensive discussions of model re-
duction in a general context as well as for specific applications
to slow coherency and inter-area oscillations can further be
found in Ref. [22].

B. Mapping the power network to a two-dimensional contin-
uum: the Swing PDE Model

Consider a two-dimensional domain Ω ⊂ R2, with coordi-
nates r = (x, y), inside which the discrete, planar or quasi-
planar network is embedded. The boundary of the domain is
denoted by ∂Ω and ∀r ∈ ∂Ω, n ≡ (nx, ny) denotes the
normal vector to the boundary at r. Imagine that the swing
Eqs. (2) are derived by discretizing a PDE describing the
dynamics of a scalar field θ(t; r) over an irregular mesh which
corresponds to the original network. Then, following [19], one
naturally asks: what is the PDE corresponding to the swing
Eqs. (2)? We answer this question by writing the following
most general form of the swing PDE on Ω:

m(r)
∂2

∂t2
θ(t; r) + d(r)

∂

∂t
θ(t; r) = p(t; r)

+
∑

α,β=1,2

∂rαbαβ(r)∂rβθ(t; r), (3)

where r1 = x, r2 = y. One of our main task is to map the
physical parameters of (2) into the continuum as follows

∀i : θi(t)→ θ(t; r), mi → m(r), di → d(r)

pi(t)→ p(t; r), bij → bαβ(r), ∀α, β = 1, 2. (4)

We discuss a procedure for reconstruction of the parameters
in Section III.

Next, the swing PDE (3) need to be equipped with physi-
cally appropriate boundary conditions, which in our case are
Neumann boundary conditions

∀t, ∀r ∈ ∂Ω : nαb
αβ∂rβθ(t; r) = 0, (5)

corresponding to a vanishing normal derivative of the angle
field on the domain boundary ∂Ω. These boundary condi-
tions directly follow from the condition that post-perturbation
frequencies in the continuous model correspond to those in

the original swing equations, i.e. ω(t; r) ≡ ∂
∂tθ(t; r) =

ωpf , ∀r ∈ Ω. This condition translates into

Dωpf =

∫
Ω

p(t; r)dr +

∫
∂Ω

bαβ(r)∂rαθ(t; r)nβ(r)dr, (6)

which directly corresponds to the frequency shift Dωpf =∑
i pi in the swing Eqs. (2) if the second term in the right-

hand side of Eq. (6) vanishes identically. This is guaranteed
by the Neumann boundary conditions (5).

In the following we simplify our PDE model, assuming that
the b-tensor is diagonal b12 = b21 = 0, accordingly, we use a
shorter notation, b11 → bx, b22 → by . Additional details on
the derivation of the swing PDE Eqs. (3) can be found in the
Appendix.

C. Parameter Reconstruction and Validation Experiments

Once the general structure of the swing PDE (3) is
established we need to reconstruct the PDE parameters
bx,y(r),m(r) and d(r). This is achieved in the next Section,
and proceeds along a smoothing procedure of the original
parameters defined on the discrete grid of Eq. (2). Ob-
viously, there are many different choices for this coarse-
graining/filtering procedure. Therefore, it is crucial to develop
a validation criteria. Our validation criterion proceeds via
post-factum dynamic tests, described in the following section,
where we compare the dynamics following a perturbation in
the original, discrete swing equations with that in the spatially
continuous model.

III. RECONSTRUCTION OF THE PDE PARAMETERS VIA
ARTIFICIAL DIFFUSION

The PDE model (3) is a continuous version of the swing
equations (2) defined on a discrete power network. Ac-
cordingly, parameter reconstruction consists in developing a
smoothing procedure of the spatially discrete physical param-
eters defined.

Such a simple smoothing procedure was proposed in
Ref. [18], [19] focusing on a 1+1 dimensional PDE represen-
tation of a linear power network, where all parameters in the
1+1 dimensional PDE were chosen to be spatially constant.
This homogeneous smoothing was improved in [20], where
non-uniform parameters of the 1+1 PDE system were derived
by means of a convolution with a fixed Gaussian kernel.

Our Artificial Diffusion (AD) approach generalizes the
Gaussian kernel approach of [20] by (a) extending from the
1+1 PDE case to the 2+1 PDE case, and (b) making it
flexible in terms of adjusting spatial scaling (width) of the
Gaussian kernel. Implementation of the AD approach starts
with initializing the spatial distribution of one of the physical
coefficients [x(r) = m(r), d(r) or bαβ(r)], assigning discrete
values from the swing model to the nearest nodes of the regular
square lattice discretizing the PDE (3). (See the Appendix for a
discussion of the discretization procedure.) Next we introduce



Fig. 1. Evolution in the artificial time τ of the system parameters for the
continuous PDE model from the PanTaGruEl grid. (See text for details.)

an AD process which propagates these initial values (in a
fictitious algorithmic time τ ) over the lattice according to

∂

∂τ
x = κ∇2x . (7)

Here, x is one of the physical system parameters, while κ and
τ are the artificial (purely algorithmic, non-physical) time and
diffusion coefficient characterizing the smoothing procedure.
They are not independent of one another and can be absorbed
into the rescaling of the other. The diffusion process governed
by Eq. (7) is stopped after some time, τ∗, which controls the
width of the convolution kernel, and which is determined by
an a posteriori validation criterion.

We illustrate the artificial diffusion procedure on PanTa-
GruEl grid. Fig. 1 shows the artificial dynamics of the diagonal
components of the susceptance tensor, bx(r) and by(r), the
damping and inertia coefficients and the power injections.
These numerical results suggest in particular that the resulting
spatial distribution of the diagonal part of the susceptance
tensor is isotropic, i.e. bx(r) ≈ by(r). This, together with the
neglect of off-diagonal elements for the susceptance tensor,
means that the entire susceptance tensor is well approximated
by a scalar function, bαβ(r) ≈ δαβb(r), with the Kronecker
symbol δαβ .

We validate the AD procedure on the PanTaGruEl grid as
follows. We find the grid points closest to the location of the
buses within PanTaGruEl and terminate the AD process when
the voltage angles of the two steady-state solutions are as close

Fig. 2. (a) assessment of the local propagation speed by c(r) =√
b(r)/m(r). (b)-(f) Fronts of the perturbation at incremental times, with

∆t = 0.6s, after the fault for inhomogeneous parameters (red) and for average
parameters (blue).

to one another as possible, θcont
i ' θdisc

i . (See Section IV) for
details.) Notice that, not surprisingly, the best fit is achieved
at setting sufficiently small τ∗, corresponding to the Gaussian
kernel size corresponding roughly to a few lattice spacing in
the grid discretization of the PDE (3).

We conclude this Section, clarifying, on one example, how
the calibration of the parameters in the PDE (3) can be used
to gain intuitive insight into the system behavior. Once the
filtered values of the susceptance tensor, b(r) and of the
inertia parameter, m(r) are discovered (via the aforemen-
tioned validation procedure), we can immediately use it to
build a spatial map for the speed of the electro-mechanical
waves, c(r) =

√
b(r)/m(r), shown in Fig. (2). The Figure

also illustrates how knowledge of c(r) allows to reconstruct
dynamics of a localized perturbation spread. (The illustration
is based on the example of the perturbation front spread within
the PanTaGruEl grid initiated in Greece. See Fig. 4, and related
discussions in the following Section, for details.)

IV. EXPERIMENTS

In this Section, we test our PDE model and AD procedure
(direct reconstruction of the PDE model parameters) against
the original swing model (the ground truth).

A. Steady State Experiments

We start with comparative analysis of the PDE model vs
original swing model performances in reproducing the steady
(time independent) solution. The two are juxtaposed in Fig. 3.
We report a good agreement, even though observing some
discrepancies, in particular in the Italian and Greek part of
the PanTaGruEl. We can attribute some of the discrepancies
to transformers, which are present in the original model (Pan-
TaGruel) but were not represented proper in the continuous
model. We plan to correct for this caveat in the future. (See
discussion in the following Section.)

B. Dynamic Experiments

Next we describe the ultimate (as dynamic) comparison
of the reduced (PDE) model and the basic (swing) model



Fig. 3. Comparison of discrete and continuous steady state solutions. (a)
Discrete solution θdisc. (b) Continuous solution θ(r). The same color map
is used in panels (a) and (b). (c) One-to-one comparison: for each bus in the
discrete model the nearest node in the continuous mesh is selected. Red line
marks a perfect match.

in describing exemplary response of the PanTaGruEl system
to a loss of 900 MW of production in Greece. Fig 4 shows
frequency response at four generators across Europe. We
register a good agreement. Notice that the largest deviations
are observed close to location of the fault.

Fig. 4. Frequency response of the system to a 900 MW loss of power in
Greece (marked by a purple star) at the locations shown in the inset. Data
from the continuous (PDE) and discrete (system of original ODEs) models
are displayed as dotted and solid lines respectively.

C. Experiments towards Future Machine Learning Explo-
rations

This Subsection is devoted to experiments aimed at provok-
ing future work where we plan to improve the AD procedure
of the PDE model parameter calibration with machine learning
(following our general logic described in the introductory
Section I, see also the next concluding Section V) with the
(Physics Informed) Machine Learning.

Moving forward we are interested to see if the number
of parameters describing the system’s physical quantities can
be drastically reduced, i.e. filtered out, without introducing
a significant loss of accuracy into description of the system
spatio-temporal dynamics at sufficiently large scale (say with
the resolution of above 50km). Specifically, we will be aiming
to improve the AD procedure finding optimal parameters in
the PDE (3) parameterized with Neural Networks. (The AD
procedure, per se, is still expected to be useful to initialize
the future PIML schemes.) Planning for this work we should
take into account a number of considerations, such as related
to keeping number of training epoch and overall the training
time under control – consistently with the goal of making the
future Machine Learning schemes capable of achieving the
goal of evaluating in parallel multiple perturbation scenarios
in the time which is comparable or faster than dynamic
simulations of the ground truth (swing) model. This NN-based
approaches will be physics informed in multiple ways, in
particular via (a) diminishes the risk of over-fitting (typical
in deep learning); and (b) using the set of eigen-modes of
the continuous model (e.g. with the parameters found via the
AD procedure), possibly filtered additionally with a low-pass
Fourier filter, as a set of features for the NN representation.

To elaborate on the last point, related to additional Fourier
filtering of the results of the AD procedure, we conducted the
following preliminary experiments illustrated in Fig. 5. We
apply a low pass filter with a cut-off frequency of 20% of the
largest frequency. We compare the stable solution that is found
before and after Fourier filtering. We find that this additional
Fourier filtering returns results which are, generally, in a
good qualitative agreement with the ground truth. (Deviations
between the two are mainly found in the peripheral areas such
as the Balkans.)

V. CRITICAL EVALUATIONS, DISCUSSIONS
AND FUTURE WORK

We start this concluding Section reflecting on what we
managed to achieve, transitioning to discussion of some
preliminary, but not yet fully confirmed observations, and
finally turning the next steps planned to advance the ambitious
program set up in the introductory Section I.

Major accomplishment of the manuscript is in construction
and validation of the PDE version of the swing equations.
The construction included accurate resolution of the boundary
conditions and development of an efficient and flexible filter-
ing procedure – Gaussian convolution achieved via “artificial
diffusion”. We also saw how the PDE model can be used to
analyze perturbations, also showing results in a transparent
and intuitive manner.

We have also made a number of interesting observations
which are clearly preliminary. Comparing the performance of
the continuous model on a regular grid on the size comparable
to the size of the original graph (the size is measured in the
number of nodes) we saw that the PDE model performance
an order of magnitude faster. This is consistent with what is
expected (see respective discussion in the introductory Section



Fig. 5. Distribution of the grid parameters before and after a Fourier low pass
filter with a cut-off frequency of 20% (of the maximum frequency) applied.

I). We also observed that in many cases a significant filtering,
reviled via choice of a rather large value of the coarsening
scale (large value of τ∗ within the “artificial diffusion” process)
does not hurt accurate resolution of the underlying phenom-
ena at sufficiently large scales (hundreds of kilometers) and
sufficiently long times (seconds).

Finally, the most important message this manuscript sends
is related to the path forward towards using the methodology
developed here to empower further work on the PDE-based
model reduction with the PIML approach. Specifically, our
next step consists in using the approach developed here as a
warm start for learning physical parameters of the PDE model
(3). (See also discussions of the preceding Section.) Indeed,
we envision modeling the functional maps for, m(r), d(r) and

Fig. 6. Comparison of the steady state solution before (a) and after (b)
application of the Fourier low-pass filter applied. The solutions are in good
agreement. (Deviations are mainly found in a grid peripheral regions, e.g. in
the Balkans.)

bαβ(r) as Neural Networks. Our preliminary tests show that
an arbitrary initial choice for the maps complicates training,
presumably due to a rather degenerate form of the respective
loss function landscape. We expect however that running the
same procedure with the initial condition computed according
to the “artificial diffusion” approach discussed above will
guarantee fast convergence of the NN training.
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APPENDIX

A. Details of the PDE discretization

We use the same spatial increment ∆ for x and y axes,
subsequently r = (i∆, j∆).

bx(r) =
bxi,j−1 + bxi,j

2
,

∂xbx =
bxi,j − bxi,j−1

∆
+O(∆4) ,

∂xθ =
θi+1,j − θi−1,j

2∆
+O(∆4) ,

∂2
xθ =

θi−1,j − 2θi,j + θi+1,j

∆2
+O(∆4) .

Similar expressions are obtained for the y-axis. Then dis-
cretization of the last term in Eq.(3) becomes

∂xbx∂xθ + bx∂
2
xθ + ∂yby∂yθ + by∂

2
yθ ≈

(
bxi,j−1θi,j−1

+ bxi,jθi,j+1 + byi−1,jθi−1,j + byi,jθi+1,j − βθi,j
)/

∆2, (8)

where β = bxi,j−1 + bxi,j + bxi−1,j + byi,j . In order to make
our numerical scheme more efficient we vectorize (re-index)
the grid, and the field, θ(t; r) defined over the grid, according
to θi,j → θ̃k, where k = Ny(i − 1) + j. It results in the
following re-indexing of the grid-neighbors: i − 1, j → k −
1, i+ 1, j → k + 1, i, j − 1→ k −Ny, i, j + 1→ k +Ny .
This results in reformulation of the principal part of Eq. (8) in
terms of a matrix Ξ acting on the vector θ̃. Furthermore, with
the convention that inner nodes, i.e. nodes that aren’t on the



boundary layer, have a zero normal vector, nx = 0 and ny = 0,
and introducing η±(x) = {1 if ± x ≥ 0 ; 0 otherwise}, we
rewrite Ξ, therefore accounting for the Neumann boundary
conditions (5),

Ξkl =− β̃kδk,l + η+(nx)b̃xk−Nyδk−Ny,l + η−(nx)b̃xkδk+Ny,l

+ η+(ny)b̃yk−1δk−1,l + η+(ny)b̃ykδk+1,l , (9)

where β̃k = η−(nx)b̃xk + η+(nx)b̃xk−Ny + η−(ny)b̃yk +

η+(ny)b̃yk−1 and δ·,· is the Kronecker product. It is important
that the method used for the numerical integration of the
PDE is a finite volume method. This class of methods is
conservative. This means that there is zero flux leakage at
the boundary by construction which, in particular, guaranties
that the post-fault system frequency is indeed at the value it
is expected to be.

B. Details of the PDE numerical scheme

We use the Crank–Nicolson method [23] to integrate
PDE (3). At each time step we solve the following system
of linear equations

A

[
θ̃(t+ ∆t)
ω̃(t+ ∆t)

]
= B

[
θ̃(t)
ω̃(t)

]
+C ,

where

A =

[
1 −∆t

2 1
−∆t

2 M
−1 Ξ 1 + ∆t

2 Γ

]
,

B =

[
1 ∆t

2 1
∆t
2 M

−1 Ξ 1− ∆t
2 Γ

]
,

C =

[
0

∆t
2 M

−1
(
p̃(t+ ∆t) + p̃(t)

)]
,

with M = diag
(
m̃
)

and Γ = diag
(
m̃−1d̃

)
.

Fig. 7. For this work, we adopt a regular lattice to represent of the continuum.
The dashed square represent a unit cell.
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