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Abstract. In this report I apply a reversible jump Markov chain Monte Carlo technique

to the problem of �tting an autoregressive (AR) model to data. In doing this I focus on

the proposed poles of the AR model. A review of relevant background material is included.

And a full speci�cation of the implementation is provided. At this time the attempt has

been unsuccessful and only partial results are reported.
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1. Introduction

Myriad �elds of industry and research are tasked with the analysis of timeseries of one form

or another. Many of these times series fall into the category of stationarity and therefore

may be studied by power spectrum analysis. Such analysis has proven to be a useful and

e�ective tools in these �elds, particularly in estimation and control theory, to name a few.

Usually the power spectrum must be estimated from data.

The present work serves as a stepping stone to the task of rational spectral approximation

given signal observations. Rational approximations can be preferred over the common Lau-

rent polynomial approximation since they often can achieve great accuracy with much fewer

parameters. The task of Rational approximation is essentially that of ARMA �tting. And

the hope of this work is to provide guidance for solving that problem by �rst considering

AR �tting by reversible jump Markov chain Monte Carlo over the space of poles and error

variance, which things determine the centered AR process. In a sense this is a proof of
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concept or trial run to understand the problem well enough to better determine whether the

full ARMA problem is worthwhile.

Spectral factorization is a very common operation preformed on estimated power spectrum.

The most common algorithms for spectral factorization assume the spectrum is in the form

of a Laurent polynomial [1, 2], though recently some methods have been developed in greater

generality [3, 4]. If positivity on the unit circle is enforced a rational power spectrum estimate

can be written as the quotient of Laurent polynomials and thus rational power spectrum

estimates are amenable to the most common spectral factorization algorithms. In their

survey Kailath et al. discussed a number of factorization techniques, all of which were

iterative and had a run time of at least O(N2) per iteration, here N is the degree of the

Laurent polynomial. And so, in some cases �tting a rational prior to factoring will a�ord

a savings in computational cost since, as was mentioned above, comparable if not great

accuracy can be achieved with many fewer degrees.

Though there are other more direct methods to estimate ARMA models such as maximal

likelihood estimates and Burg estimates (see, for example [5]) these techniques require the

user to select the order of the ARMA, a priori, or compute analysis on a range of orders and

identify a criteria (such as AIC or BIC) to select the best order (for an example see [6]). In

contrast this method has no such constraint. The order is left as a parameter to be �tted

with the rest.

I have decided to focus on the poles and zeros of the characteristic functions of the ARMA

model (or for now the AR model) for a few reasons. One is that ARMA and AR models

require their poles to lie inside the unit circle in order for the process to be stationary.

To propose poles already in the unit circle is much easier to work with than the analogous

constraint applied to the autoregressive coe�cients. Another reason to focus on the zeros and

poles is that there is a uniform sensitivity among the them. The autoregressive coe�cients are

ordered and each plays a unique role in the estimator, the coe�cient to the �rst lagged term

has a di�erent job than that on the 10th lagged term, but there is no ordering to the poles

and they enjoy homogeneity among themselves. Though this has not been substantiated, I

believe this may make the space more regular, and them problem better conditioned.

The remainder of the report is organized as follows. In Section 2, I provide relevant

backgrounds material including some results from autoregressive models (Sec 2.1), an intro-

duction to reversible jump Markov chain Monte Carlo (RJMCMC) (Sec 2.2), and Bayesian

inference in the framework of Markov chain Monte Carlo (MCMC) (Sec 2.3). I do assume

the reader has some familiarity with basic MCMC theory. Then in Section 3, I construct the

RJMCMC implementation that will be used to explore the space of perspective AR mod-

els. In Section 4, I brie�y outline the experiments I ran and summarize what results were

obtained. And �nally in Section 5, I conclude with some remarks.

2. Background

In this section I provide material useful to understanding what is to follow. I �rst de�ne

the autoregressive model, and provide some relevant properties, including a derivation of the

likelihood of an AR process given model parameters. I next review Bayesian inference and
2
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how it is used in conjunction with Markov chain Monte Carlo. Following that I include an

introduction to reversible jump Markov chain Monte Carlo. This includes a dirivation of the

acceptance probabilities for moves from spaces of di�erent dimension. The material of the

discussion is drawn from three main sources [7, 8, 9].

2.1. The Autoregressive Model. There are a number of ways to model sequential data,

that is, data observed regularly over time, timeseries. The autoregressive model is one such

model. It assumes that the present value of the process is a random IID normal perturbation

of a �xed linear combination of previous values. Written precisely, the autoregressive model

of order p (AR(p)) has the form

Yn + a1Yn−1 + · · ·+ apYn−p = µ+ εn εn ∼ N(0, σ2) IID

Observe that an AR(1) process is Markov.

With that de�nition in hand we now review some related concepts. a stochastic process

X = (Xt, t > −∞) is said to be wide-sense stationary if (1) its mean (taken at each time)

EXt = µt

does not depend on time, that is, it is constant (µt = µ) and (2) if autocovariance function

CXX(t+ τ, t) = E[(Xt+τ − µ)(Xt − µ)∗]

depends only on the lag τ in which case I denote it CX [τ ], the brackets following a signals

and systems engineering convention, in discrete time.

And so, given a wide-sense stationary (WSS) stochastic process X =
(
Xn, n = 0, 1, . . .

)
it's z-spectrum SX(z) is de�ned by

SX(z) =
∞∑

n=−∞

CX [n]z
−n.

Where as the z-spectrum is the z-transform1 of the of the autocovariance sequence the

term power spectrum will be used to denote the Fourier transform of the autocovariance

sequence,

S̄X(ω) =
∞∑

n=−∞

CX [n]e
−jnω

(
= SX(e

iω)

)
.

The function SX(z) is real-valued on the unit circle since, CX [−n] = C∗
X [n], and by the

Wiener-Khinchin theorem, it is, in fact, nonnegative there as well.

Returning to the AR model, to name the full random process I will omit the time index

and write X = (Xn, n > −∞), and for the disturbance or error process ε = (εn, n > −∞).

For the vector of coe�cients (including a0 = 1) I will write a = (1, a1, a2, . . . , ap)

1The z-transform of an ℓ1 sequence (uj , j > −∞) is the function over the complex plan given by
∞∑

j=−∞
ujz

−j .
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For the analysis to follow we will only consider data from processes that are assumed to

be WSS and it will make no di�erence what the mean µ of the process is, so it will be set to

µ = 0. Thus I will only consider centered models and data.

An AR(p) process with coe�cients a is WSS stationary if the zeros of the z-transform of

a, A(z) = 1 + a1z
−1 + a2z

−2 + · · · + apz
−p, which I call the transfer function of the model,

lie strictly within the unit circle (see e.g. [10]). With this in mind, given a WSS AR(p)

process it's z-spectrum can be directly computed using the model data a and σ2. Observe

that since2

(1) (a ⋆ Y )n = εn,

it can be shown3 that

SY (z) =
σ2

A(z)A∗(z−∗)
=

σ2

(1− z1z−1)(1− z∗1z) · · · (1− zpz−1)(1− z∗pz)

where zj for j = 1, . . . , p are the zeros of A(z). This demonstrates that the z-spectrum of

the (WSS) AR(p) process is determined by it's poles (zj, j = 1, . . . , p) and error covariance

σ2.

2.1.1. The exact likelihood of a �nite time realization of an AR(p) process. I now derive the

likelihood formula for a �nite time truncation, Ỹ = (Ỹn, n = 1, 2, . . . ,M) of the complete

AR(p) process Y given the model data p the order, (zj, j = 1, . . . , p) the poles of the

coe�cient �lter, σ2 the error covariance, and M the number of observations. This derivation

abreiviates that given in [5, Chapter 22]. The formulation is in terms of the autoregressive

coe�cients a, but in implementing this my input data is the zeros of the transfer function

of this �lter, which is A(z) = 1 + a1z
−1 + a2z

−2 + · · · + apz
−p. Notice that, a is completely

determined by (zj, j = 1, . . . , p), by the identity

A(z) = (1− z1z
−1)(1− z2z

−1) · · · (1− zpz
−1), ∀z ∈ C

so that each ai is some symmetric polynomial of z1, . . . , zp.

2The ⋆ denotes the usual convolution of in�nite sequences

a ⋆ Y =

 ∞∑
j=−∞

ajYn−j , n > −∞

 ,

and for �nite sequences �pad out� with in�nite zeros.
3This is a consequence of a convolution theorem for the z-transform. The particular result used here is that
for a WSS process X and an ℓ1 �lter a = (. . . , a−2, a−1, a0, a1, a2, . . . ), with transfer function (z-transform)
A(z) =

∑∞
n=−∞ anz

−n, then

Sa⋆X(z) = A(z)SX(z)A∗(z−∗).

The superscripts −∗ together is an abbreviation for the complex conjugate of the multiplicative inverse, i.e.

z−∗ =
1

z∗
.

A good source of this material is [1, Sec. 6.2]
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To begin with, observe that since ε ∼ CN(0, σ2IM) is Gaussian, Ỹ = (Yn, n = 1, . . . ,M)

is also Gaussian. So, let var(Ỹ ) = σ2QM . And the density of Ỹ my be written

fỸ (y) = (πσ2
ε)

−M |QM |−1 exp

(
−1
σ2
ε

y∗Q−1
M y

)
Here we think of y = (yn, n = 1, . . . ,M) as a sample or realization of the vector or �nite

time process Ỹ . We seek to derive QM in terms of a and σ2.

To that end, consider (1) specialized to the snapshot y, with corresponding error realization

ε̃ = (ε̃n, n = 1, 2, . . . ,M), written as

(a ⋆ y)n = ε̃n for n = 1, . . . ,M

This can be written in matrix form as

(2) A∗y
(1) + Ay(2) = ε̃(2)

where y(1) = (y1, . . . , yp) is the column vector of the �rst p observation of y and y(2) =

(yp+1, . . . , yM) is the column vector of the remaining M − p observations of y. The column

vectors ε̃(1) and ε̃(2) are analogously de�ned with respect to ε̃. The system (2) has only M−p
equations since the �rst p equations contain ε̃(1) which is not strictly speaking IID since the

�rst p terms of y would only be partially convolved with a. The matrix A is the banded

Toeplitz (lower triangular) ((M − p)× (M − p))-matrix whose �rst column is a followed by

M − (2p+ 1) zeros. And the matrix A∗ is an extension of A due to the terms of y(1), which

I know write out explicitly for clarity.

A∗ =



ap . . . a(1)

...
. . .

...
0 . . . ap
0 . . . 0
...

...
0 . . . 0
0 . . . 0


, A =



1 . . . 0 0 . . . 0 0
...

. . .
...

...
...

...
ap−1 . . . 1 0 . . . 0 0
ap . . . a(1) 1 . . . 0 0
...

. . .
...

...
. . .

...
...

0 . . . ap ap−1 . . . 1 0
0 . . . 0 ap . . . a(1) 1


Now rewriting (2), with a trivial addition, in block matrix form gives

(3)

[
y(1)

ε̃(2)

]
=

[
Ip 0
A∗ A

] [
y(1)

y(2)

]
,

which may be inverted as

(4)

[
y(1)

y(2)

]
=

[
Ip 0

−A−1A∗ A−1

] [
y(1)

ε̃(2)

]
.

Now since

(5) var

([
y(1)

ε̃(2)

])
= σ2

[
Qp 0
0 IM−p

]
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(Qp to be determined later). We can write

σ2QM = var

([
y(1)

y(2)

])
= σ2

[
Ip 0

−A−1A∗ A−1

] [
Qp 0
0 IM−p

] [
Ip −A∗

∗A
−∗

0 A−∗

]
= σ2

[
Qp −QpA

∗
∗A

−∗

−A−1A∗Qp A−1(A∗QpA
∗
∗ + Ip)A

−∗

]
.

Which can be inverted to

σ−2Q−1
M = var

([
y(1)

y(2)

])−1

=
1

σ2

[
A∗

∗A∗ +Q−1
p A∗

∗A
A∗A∗ A∗A

]
.

And thus we obtain

Q−1
M =

[
A∗

∗A∗ +Q−1
p A∗

∗A
A∗A∗ A∗A

]
.

So that, we arrive at

(6) y∗Q−1
M y = y(1)∗Q−1

p y(1) + (A∗y
(1) + Ay(2))∗(A∗y

(1) + Ay(2))

Observe that since y is assumed to be a realization of a segment of Y , and since Y is

assumed to have started in the remote past, QM (the autocovariance of y)is Toeplitz and so

Q−1
M possesses symmetry about its NE-SW diagonal. Which means that

A∗
∗A∗ +Q−1

p = A11A
∗
11

where A11 is the p× p principal submatrix of A and so,

Q−1
p = A11A

∗
11 − A∗

∗A∗

Which allows us to write the likelihood of y is terms of only p, (zj, j = 1, 2, . . . , p), σ2, and

M .

2.2. Brief introduction to reversible jump Markov chain Monte Carlo.

2.2.1. Metropolis Hastings. The Metropolis-Hastings (MH) algorithm allows us to sample

from a target distribution π which we can evaluate (up to a multiplicative constant) but

cannot sample from, such as in our case, a desired posterior distribution. The idea is to �nd

a Markov chain which has as it's unique stationary distribution the target density. Recall

that for a Markov chain over a statespace S, with transition density p(x, y), a stationary

distribution is one in which is on for which

(7) π(y) =

∫
S

π(x)p(x, y)dx for all y ∈ S.

Constructing a transition density p over S×S given only S and π is in general very di�cult.

But it turns out that the simplest A Markov chain is said to poses detailed balance if

its stationary distribution and its transition density satis�es the following property for all

x, y ∈ S

(8) π(x)p(x, y) = π(y)p(y, x)
6
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Detailed balance is a su�cient condition for a transition density p to satisfy (7). Observe∫
S

π(x)p(x, y)dx =

∫
S

π(y)p(y, x)dx = π(y)

∫
S

p(y, x)dx = π(y)

The MH algorithm takes in a proposal transition density q and adjusts it in a way that the

adjustment is guaranteed to satisfy detailed balance for the target distribution. Thus the

adjusted transition density describes a Markov chain whose stationary distribution is π.

I now describe the algorithm. Given the target distribution π which can be evaluated (up

to a multiplicative constant) but which cannot be sampled from, the user provides a proposal

transition density q which may be samples from at each point in the statespace. With this

data together with an initial state X0 ∈ S, the procedure precedes as in Algorithm 1.

Algorithm 1 Metropolis-Hastings

1: procedure MetropolisHastings(π,q,X0)
2: X ← X0

3: for i = 1 to N do

4: Sample Y ∼ q(X0, ·)
5: Evaluate acceptance probability α

α(X, Y ) = 1 ∧ π(Y )q(Y,X)

π(X)q(X, Y )

6: Sample u ∼ Unif([0, 1])
7: if u ≤ α then

8: Accept proposal: X ← Y

2.2.2. Some issues with MH. The above description of the algorithm is suitable for many

purposes some exceptional cases however are served by the same concept but in a slightly

di�erent framework. Such is the problem posited in this paper. We are dealing with a

posterior, our target distribution whose domain is subsets of many di�erent dimensions. To

elaborate, we desire the statespace to include C1 = {1}×D×R+ on the one hand to including

AR(1) processes but on the other hand AR(p) processes ought to be considered. These live

in the parameter space C2 = {2} × D2 × R+. So that if I wanted to transition from x ∈ C1
to x′ ∈ C2, I met with a complexity following the original Metropolis Hastings formulation,

in that it asks me to compute
π(x)q(x′, x)

π(x′)q(x, x′)
.

This draws my attention to the fact that q is a function on many di�erent spaces and therefore

must be de�ned with that in mind, and the acceptance ratio α must in turn be de�ned I a

way that produces detailed balance.

Another problem is that above we integrate using densities times the Lebesgue measure

over the natural ambient Euclidean space, but what if the set spans spaces of di�erent

dimension the measure we would like to use would have to be in some way extended.

Principally, the goal of reversible jump Markov chain Monte Carlo (RJMCMC) is to allow

for the Markov chain to have a statespace that includes spaces of di�erent dimension. Such
7
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as

C =
K⋃
k=1

Ck where Ck ⊂ Rnk , K ≤ ∞

One way to approach these subtleties is to consider extending detailed balance in an integral

sense. Given here,

(9)

∫
A

∫
A′
π(x)p(x, x′)dx′dx =

∫
A

∫
A′
π(x′)p(x′, x)dx′dx for all A ∈ Ck, A′ ∈ Ck′

Notice that if (8) holds then (9) will hold. Conversely, if (9) holds for all admissible k, k′,

then (8) will hold4.

This will provide a new way of seeing the old HM algorithm. Consider sets A ⊂ Ck ⊂ Rnk

and A′ ⊂ Ck′ ⊂ Rn′
k . If nk = n′

k the acceptance ratio can be computed the same as regular

MH, so suppose then, with no loss of generality nk < n′
k = r + nk And consider now this

extended sort of detailed balance. Now, de�ne a transition kernel P : Ck ×B(C′
k)→ R+ by

P (x,A′) =

∫
A′
p(x, x′)dx′

this gives the density with respect to x over Ck that the probability that the adjusted proposal
Markov chain transitions from a point x to a set A′. Using the basic MH framework we see

that this would be written as follows

(10) P (x,A′) =

∫
A′
q(x, x′)α(x, x′)dx′ + Ix∈A′ ·

[∫
q(x, x′)[1− α(x, x′)]dx′

]
.

If we substitute P (x,A′) for the inner iterated integral we get on the left-hand side of (9)

which becomes∫
A

π(x)

∫
A′
q(x, x′)α(x, x′)dx′dx+

∫
A

π(x)Ix∈A′

∫
q(x, x′)[1− α(x, x′)]dx′dx

=

∫
A

∫
A′
π(x)q(x, x′)α(x, x′)dx′dx+ 0.

Note that since A and A′ live in di�erent dimensions their intersection is empty. And,

repeatimg the procedure for the right hand side of (9) gives,∫
A′
π(x′)

∫
A

q(x′, x)α(x′, x)dxdx′ +

∫
A′
π(x′)Ix′∈A

∫
q(x′, x)[1− α(x′, x)]dxdx′

=

∫
A

∫
A′
π(x′)q(x′, x)α(x′, x)dx′dx+ 0.

4To see this, supposing p and π to be Borel measurable, let E = {(x, y) ∈ Ck×Ck′ |π(x)p(x, y) ≤ π(y)p(y, x)}.
And let Ri be a countable collection of closed, non-overlapping rectangles such that Ri = A × A′ for some
A ∈ Ck and some A′ ∈ Ck′ and E =

⋃∞
i=1 Ri then note that∫∫

E

|π(x)p(x, y)− π(y)p(y, x)| dxdy =

∫∫
E

π(x)p(x, y)− π(y)p(y, x) dxdy

=

∞∑
i=1

∫∫
Ri

π(x)p(x, y)− π(y)p(y, x) dxdy = 0

So, that π(x)p(x, y) = π(y)p(y, x) a.e. on E. This can be shown for Ec as well.

8
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So, for integral detailed balance to hold it is su�cient for

(11)

∫
A

∫
A′
π(x)q(x, x′)α(x, x′)dx′dx =

∫
A

∫
A′
π(x′)q(x′, x)α(x′, x)dx′dx.

It is usually possible to sample r random numbers u from some known (joint) distribution g

and then propose the new state x′ by a suitable deterministic function h, such that (x′, u′) =

h(x, u). The variable u′ is r′ random numbers generated from a know distribution g′ so that

the reverse move from x′ to x uses u′ to recover u, by h′ the inverse of h. This, of course,

requires nk + r = nk′ + r′ which is referred to as the dimension matching condition. Observe

that in conjunction with x, u determines x′, so that x and u parameterize x′ and we can

therefore integrate solely with respect to x and u on the left-hand side, and similarly for the

right-hand side. In this way the the proposal density q(x, x′) can be identi�ed with g(u) and

q(x′, x) with g′(u′) so that (11) becomes

(12)

∫
x∈A

∫
x∈A′

π(x)g(u)α(x, x′)dxdu =

∫
x∈A

∫
x∈A′

π(x′)g′(u′)α(x′, x)dx′du′.

If h and h′ is di�erentiable (h is di�eomorphic), then a standard change-of-variables can be

applied to put both (n + r)-dimensional integrals in the same variable space and �nd that

equality holds if

π(x)g(u)α(x, x′) = π(x′)g′(u′)α(x′, x)

∣∣∣∣∂(x′, u′)

∂(x, u)

∣∣∣∣ .
And so, we can pick α to be

(13) α(x, x′) = 1 ∧ π(x′)g′(u′)

π(x)g(u)

∣∣∣∣∂(x′, u′)

∂(x, u)

∣∣∣∣ .
2.3. Bayesian inference and MCMC. Bayesian inference can be used in conjunction

with MCMC in model determination. Suppose we have data y and a model with parameters

θ. We would like to understand how the parameters are distributed given a realization of

the �model�, the assumption being y is drawn for our proposed model. Bayes rule says

(14) p(θ|y) ∝ p(y|θ)p(θ)

In (14) the left-hand side is called the posterior, and the right-hand side comprises, from right

to left, the likelihood and the priors. Sometimes, we is the case above, we have a formula for

the likelihood and some principles way of assigning a prior. In that case one can study the

posterior this way. We use Markov chain Monte Carlo to same form distributions otherwise

may not be able to sample from. And so using that technique together with knowledge of the

likelihood and prior we may be able to create a markov chain to sample from the posterior.

In the present context, we are interested in

p(p, z, σ2|y)

. This is the probability density over the parameter space conditioned on the observed data.

The parameters here are random variables, with their own distributions, the priors, but by

virtue of the assumption that y was drawn form an AR(p) model with these parameter values

drawn for these distributions there is dependence between y and the parameters p, z, σ2. We
9
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exploit that dependence in conditioning on y and getting the conditional distribution of the

parameters. Basyes rule allows us to re-frame this object to a more approachable one. We

write

p(p, z, σ2|y) ∝ p(y|p, z, σ2)p(p, z, σ2)(15)

= p(y|p, z, σ2)p(p, z)p(σ2)(16)

∝ p(y|p, z, σ2)p(z|p)p(p)p(σ2).(17)

In our case it will be reasonable to assume that error variance is independent with the order

of the model and the poles of the model. To apply this to the acceptance probability from

(13) we get

α = 1 ∧ π(p′, v′, z′|y)
π(p, v, z|y)

· q(v, z|v
′, z′, p, p′)q(p|p′)

q(v′, z′|v, z, p, p′)q(p′|p)

∣∣∣∣∂(v′, z′)∂(v′, z′)

∣∣∣∣
= 1 ∧ π(y|v′, z′, p′)π(v′, z′|p′)π(p′)

π(y|v, z, p)π(v, z|p)π(p)
· q(v, z|v

′, z′, p, p′)q(p|p′)
q(v′, z′|v, z, p, p′)q(p′|p)

∣∣∣∣∂(v′, z′)∂(v′, z′)

∣∣∣∣
= 1 ∧ π(y|v′, z′, p′)

π(y|v, z, p)
· π(v

′, z′|p′)π(p′)
π(v, z|p)π(p)

· q(v, z|v
′, z′, p, p′)q(p|p′)

q(v′, z′|v, z, p, p′)q(p′|p)

∣∣∣∣∂(v′, z′)∂(v′, z′)

∣∣∣∣
α = 1 ∧ (likelihood ratio)× (prior ratio)× (proposal ratio)× (Jacobian)

3. Specification of the algorithm

In this section I implement formulate the Markov chain and implement it. I begin by

with an overview clarifying what the statespace is and how, in general the process will move

around it. I then go into details starting with the priors of the parameters of the statespace.

Then the moves types are identi�ed and the probability with which they are chosen are

set forth. Lastly I take each move type in turn and, along with move speci�c details, I

provide the proposal density and acceptance probabilities. In the next section he chain is

then implemented and results are reported.

The goal is to produce a Markov chain that tends toward the stationary distribution of

which is the posterior p(p, z, σ2|y) (from (15)) which means the chain spends most of its

time in areas correspond to parameters of high probability given the time series realization.

Therefore, the statespace will be

C =
pmax⋃
p=1

Cp where Cp = {p} × R+ × Dp

pmax is a hyper parameter to be determined by the user. A generic element of this space will

be denoted

x = (p, v, z1, z2, . . . , zp) ∈ C.
Here p is the order of the purposed AR(p) model, v (= σ2) is the variance of the white noise

error process, and z = (z1, z2, . . . , zp) is the location of the poles of the model.
10
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The Markov chain will be denoted Xn = (Pn, Vn,Zn) where Zn are random vectors of

varying length.

3.1. Priors. The order P will be a Poisson distributed with rate λ, conditioned on P ≤ pmax

so that

fP (p) =
λpe−λ

p!
· Ip∈[0,pmax]

(
pmax∑
j=0

λje−λ

j!

)−1

∝ λpe−λ

p!
· Ip∈[0,pmax]

For the variance V , let u ∼ Unif([−β, β]), β > 0 and let

V = eu so that fV (v) =
1

2βv
1[−β,β](log(v)).

The location of the poles will be independently and uniformly distributed on the unit disk.

So, for a given order p the prior of the pole locations Z = (Z1, Z2, . . . Zp) can be written as

fP (z1, z2, . . . , zp) =
1

πp

p∏
j=1

1D(zj)

since the p poles are independent,

fZj
(zj) =

1

π
1D(zj) for j = 1, . . . , p.

3.2. Moves and move types. There are three move types, (1) change in variance, (2)

change in pole position, and (3) birth or death of pole. The change of variance occurs with

probability νp (p is the number of poles). Change in pole position occurs with probability πp

and birth or death of pole occurs with probabilities bp, and dp, respectively. More precisely, a

move from Cp to Cp+1 occurs with probability bp and from Cp+1 to Cp occurs with probability

dp The probabilities observe the following conditions

(a) βp + πp + bp + dp = 1 for all p

(b) d0 = π0 = bpmax = 0

(c) bp = cmin{1, fP (p+ 1)/fP (p)}, and dp = cmin{1, fP (p)/fP (p+ 1)}
for some c as large as possible so that bp + dp ≤ 0.9

3.2.1. Moves and their Acceptance probabilities. I will now discuss the moves themselves.

A change in variance is a move within Cp. The new variance V ′ will be so that

log(V ′/V ) ∼ Unif([−β, β])

meaning V ′ = V eu where u ∼ Unif([−β, β]) and so,

fV ′|V (v
′, v) =

{
1

2βv′
, v′ ∈

[
ve−β, veβ]

0, otherwise

Observe that if

v′ ∈
[
ve−β, veβ] then v ∈

[
v′e−β, v′eβ]

11
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And since V ′ is contrived with probability one to fall in
[
V e−β, V eβ] the proposal ratio is

fV |V ′(v, v′)

fV ′|V (v′, v)
=

1
2βv

1
2βv′

=
v′

v

The likelihood ratio is

(πv′)−M |QM |−1 exp
(−1

v′
y∗Q−1

m y
)

(πv)−M |QM |−1 exp
(−1

v
y∗Q−1

m y
) =

( v
v′

)M
exp

(
−y∗Q−1

m y(1/v − 1/v′)
)

(18)

The acceptance ratio is computed to be

α = 1 ∧ (likelihood ratio)× (prior ratio)× (proposal ratio)× (Jacobian)

= 1 ∧
( v
v′

)M
exp

(
−y∗Q−1

m y(1/v − 1/v′)
)
×

1
2βv′

1[−β,β](log(v
′))

1
2βv

1[−β,β](log(v))
× v′

v
× 1

= 1 ∧
( v
v′

)M
exp

(
−y∗Q−1

m y(1/v − 1/v′)
)

For a change in position of a pole randomly select j = 1, . . . , p (uniformly) and the pole

Zj will be perturbed by ũ ∼ CN(Zj, π̂) conditioned on Z ′
j = Zj + ũ ∈ D. This gives

fZ′
j |Zj

(z′, z) ∝

{
1
ππ̂

exp
(−1

π̂
|z′ − z|2

)
[I(z)]−1, z′ ∈ D

0, otherwise

where I(z) =
1

ππ̂

∫
D
exp

(
−1
π̂
|z′ − z|2

)
dz′ w.r.t Lebesgue measure on C. A calculation

shows that

I(z) =

∫ 2π

0

1− exp

(
−1
π̂

(1 + |z|2 − 2|z| cos t)
)
dt.

The prior ratio is unity since practically z′ is enforced to be in the unit disk. The proposal

ratio is given by I(z′)/I(z) and the likelihood ration is

|Q′
M |−1 exp

(−1
v′
y∗(Q′

m)
−1y
)

|QM |−1 exp
(−1

v
y∗Q−1

m y
)(19)

where Q′
M is computed with z′j in place of zj. And so, the acceptance ratio reduces to

α = 1 ∧
|Q′

M |−1 exp
(−1

v′
y∗(Q′

m)
−1y
)

|QM |−1 exp
(−1

v
y∗Q−1

m y
) × I(z′)

I(z)

The the birth and death of a pole we need to consider the move together since one reverses

the other and vice versa. For the birth a pole we move from Cp to Cp+1 by appending a pole

drawn from the uniform distribution on the unit disk. We are changing dimensions so we

need to check that we meet the dimension matching condition. To check this we need to

describe the reverse move, the death of a pole. The death of a pole is the deletion of a pole

chosen at random. This is a very simple case, in the context of Section 2.2 we simple set

u ∼ Unif(D) to be the new pole, then the map to new state (from Cp) to Cp+1 is linear and

almost the identity (were it not for the value of p changing to p + 1). The inverse of this

12
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map (from Cp+1 to Cp) simply maps zj to u′ where it gets discarded. The Jacobian therefore

is 1.

For the priors ratio, the priors to consider can be seen under (17), we need not consider

p(σ2) since v remains unchanged by this move and will not a�ect the ratio. However, we

have

p(z′|p′) = 1

πp+1
and p(z|p) = 1

πp

and
p(p′)

p(p)
=

λp+1e−λ

(p+ 1)p!
· p!

λpe−λ
=

λ

p+ 1

and the proposal ratio is
q((p, z), (p′, z′))

q((p′, z′), (p, z))
=

dp
bp/π

Putting all this together gets an acceptance probability for the birth of a pole of

α = 1 ∧
|Q′

M |−1 exp
(−1

v′
y∗(Q′

m)
−1y
)

|QM |−1 exp
(−1

v
y∗Q−1

m y
) × λ

p+ 1

dp
bp

(20)

Similarly for the death of a pole,

α = 1 ∧
|Q′

M |−1 exp
(−1

v′
y∗(Q′

m)
−1y
)

|QM |−1 exp
(−1

v
y∗Q−1

m y
) × p+ 1

λ

bp
dp

(21)

4. Experiments and Results

This work is un�nished, however, I here describe my progress in implementing this scheme.

I began with a known realization of an AR(1) process with a pole at z1 = −0.5 and whit

noise variance set to σ2 = 1.

I set the parameters to be

λ = 1 β =
1

5
π̂ = 0.2

For this �rst run p was �xed, through out, bk = dk = 0 for all k. I also βp=1 = 0.2,

Figure 1 shows 2 independent Markov chains. And exhibits two major problems. First is

that no matter the starting condition the chain tends towards the point 1 on the real axis,

seeming to usually reject moves not in that direction. Second is that the variance tends

towards zero, exponentially.

5. Discussion

With more time I hope to identify the causes of the aforementioned unexpected behavior.
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