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Model reduction methods aim to describe complex dynamic phenomena using only 
relevant dynamical variables, decreasing computational cost, and potentially highlighting 
key dynamical mechanisms. In the absence of special dynamical features such as 
scale separation or symmetries, the time evolution of these variables typically exhibits 
memory effects. Recent work has found a variety of data-driven model reduction methods 
to be effective for representing such non-Markovian dynamics, but their scope and 
dynamical underpinning remain incompletely understood. Here, we study data-driven 
model reduction from a dynamical systems perspective. For both chaotic and randomly-
forced systems, we show the problem can be naturally formulated within the framework 
of Koopman operators and the Mori-Zwanzig projection operator formalism. We give 
a heuristic derivation of a NARMAX (Nonlinear Auto-Regressive Moving Average with 
eXogenous input) model from an underlying dynamical model. The derivation is based 
on a simple construction we call Wiener projection, which links Mori-Zwanzig theory to 
both NARMAX and to classical Wiener filtering. We apply these ideas to the Kuramoto-
Sivashinsky model of spatiotemporal chaos and a viscous Burgers equation with stochastic 
forcing.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Unsteady fluid flow, fluctuations in power grids, neural activity in the brain: these and many other complex dynamical 
phenomena arise from the interaction of a large number of degrees of freedom across many orders of magnitude in space 
and time. But, in these and many other systems, only a relatively small subset of the dynamical variables are of direct 
interest or even observable. Reduced models, i.e., models that use only relevant dynamical variables to reproduce dynamical 
features of interest on relevant timescales, are thus of great potential utility, especially in tasks requiring repeated model 
runs like uncertainty quantification, optimization, and control. Moreover, relevant dynamical mechanisms are often easier to 
glean and understand in reduced models.

Many approaches to model reduction — also known as the closure problem in physics and reduced-order modeling in 
engineering — have been proposed. On one hand, a variety of analytical and computational methods have been proposed 
based on dynamical systems theory and statistical mechanics. These have been especially successful in situations with 
special dynamical features like sharp scale separation, low dimensional attractors, or symmetries; see, e.g., [1–4]. However, 
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not all scientific and engineering applications exhibit these features, and in such cases reduced models must account for 
memory and noise effects (see, e.g., [5,6] as well as Sect. 2). On the other hand, while purely data-driven approaches, i.e., 
those based on fitting generic statistical models to simulation data or physical measurements, have been quite successful in a 
variety of settings without sharp scale separation (see, e.g., [7–12], the dynamical systems interpretation for these methods 
is often unclear, and as a result their scope of applicability remain incompletely understood. In addition, a systematic 
understanding from the nonlinear dynamical systems point of view would provide a framework for analyzing and improving 
these methods.

This paper is the first step in our effort to bridge this gap; for different perspectives and approaches to similar questions, 
see, e.g., [13–16]. First, using Koopman operators, the Mori-Zwanzig formalism, and Wiener filtering, we propose a simple 
mathematical formulation of data-driven model reduction. The resulting framework links dynamical systems theory and 
data-driven modeling, and can serve as a starting point for systematic approximations in model reduction. In particular, we 
show that a variant of the NARMAX (Nonlinear Auto-Regressive Moving Average with eXogenous input) representation of 
stochastic processes, widely used in time series analysis and data-driven modeling (see [17,18,8] and references therein), 
can be derived via a construction we call “Wiener projections,” which is equally applicable to either deterministic chaotic or 
random dynamical systems. Another consequence of our work is that for problems with time-stationary statistics, classical 
Wiener filtering can provides an alternative to Mori-Zwanzig as a framework for model reduction.

Organization. In Sect. 2, we recall relevant dynamical systems theory background, including a discrete-time version of the 
Mori-Zwanzig formalism and the NARMAX representation of stochastic processes. We also formulate the problem of data-
driven driven model reduction considered in this paper. Sect. 3 describes the Wiener projection and its basic properties, 
and shows how it can be used to derive a variant of NARMAX. Sect. 4 is concerned with numerical implementation details, 
and Sect. 5 examines the application of these ideas to the Kuramoto-Sivashinsky partial differential equation (PDE) and to 
a stochastic Burgers equation. For the convenience of readers, we have included appendices on an alternate derivation of 
the Mori-Zwanzig equation (which sheds some light on its interpretation); a summary of classical Wiener filtering and the 
z-transform; and detailed numerical results on our two examples.

2. Data-driven model reduction in discrete time

2.1. Problem formulation and dynamical setting

We assume the full system of interest is a discrete-time dynamical system

Xn+1 = F (Xn). (2.1)

The states Xn are points in a space X, which can be a vector space, a manifold, or a more general space. We refer to 
Eq. (2.1) as the full model. The dynamical variables of interest, or relevant variables, are defined by x = π(X), π being a given 
function mapping points in X to points in d-dimensional Euclidean space Rd , generally with d � dim(X). (The choice 
of π is dictated in part by the application, in part by dynamical considerations such as scale separation.) Eq. (2.1) can 
accommodate continuous time systems by letting F be the time-�t solution map (for some �t > 0) or a Poincaré map. We 
focus on discrete-time reduction because (i) observations are always discrete in time, and (ii) discrete-time reduced models 
avoid the numerical errors that come from integrating continuous time reduced models, which can be significant in chaotic 
systems [8,19].

By data-driven model reduction, we mean using data to construct models that use only the relevant variables. We are 
interested in reduced models that can (i) forecast xn given its past history, and (ii) reproduce long-time statistics, e.g., 
correlations and marginal distributions. In general, parametric model reduction methods begin with a family of models with 
unknown parameters and observations ̃xn = π( X̃n), where ( X̃n)

N
n=0 is a trajectory (or multiple trajectories) of the full model. 

One then estimates the parameters by fitting the model to the data, usually by minimizing a suitable loss function. Methods 
differ in their choice of models and loss functions, which can impact both model fitting and the performance of the reduced 
model.

A useful approach to the statistical properties of dynamical systems is to view the space of observables on X as forming 
a Hilbert space H = L2(μ) with inner product 〈 f , g〉 = ∫

f g dμ. The probability distribution μ describes the long-time 
statistics of typical solutions of Eq. (2.1), and is invariant, i.e., if X0 has distribution μ, then so does Xn for all n > 0. Inner 
products are thus naturally interpreted as steady-state correlations. Many dynamical systems of interest possess multiple 
“natural” invariant measures; the choice of a suitable measure is dictated in part by the application, in part by computational 
tractability. For example, in molecular dynamics, one may consider microcanonical, canonical, or grand canonical ensembles; 
for dissipative chaotic systems, relevant invariant probability measures are often singular distributions supported on strange 
attractors that nevertheless reflect the statistics of a set of initial conditions with positive phase space volume.

In principle, the measure μ need not be invariant. But invariance significantly simplifies the problem of data-driven 
model reduction, and in addition guarantees many convenient mathematical properties. Without the invariance assumption, 
far more data would be needed. For these reasons, we focus on stationary processes in this paper. Equivalently, we assume 
X0 has distribution μ, so that (Xn) is stationary.

Recall that the Koopman operator is the operator M defined by Mϕ(X) = ϕ(F (X)). The Koopman operator advances 
observables forward in time: Mϕ(X) gives the value of ϕ at the next step if the current state is X . The Koopman operator 
2
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and its adjoint, the Perron-Frobenius transfer operator, describes the dynamics from the function space point of view. Much 
is known about their properties as operators on H and on other relevant Banach spaces, see, e.g., [20] or [21]. Both the 
Koopman and Perron-Frobenius operators have been used extensively in computational nonlinear dynamics; see, e.g., [22,23].

We will use extensively two properties:

(i) The Koopman operator is invertible when F is invertible, and M−1ϕ = ϕ ◦ F −1.
(ii) With the inner product 〈·, ·〉 above, Koopman operators are Hilbert space isometries (i.e., 〈Mu, M v〉 = 〈u, v〉) and 

unitary (MM∗ = M∗M = I) when F is invertible [21,20].

We note that property 2 relies on the invariance of μ.
One of the uses of Koopman operators (and the Mori-Zwanzig formalism introduced in the next section) is to turn 

nonlinear dynamics questions into questions involving linear operators, for which mathematical analysis and formal manip-
ulation are often easier. We will take advantage of this in Sect. 3.

2.2. Discrete-time Mori-Zwanzig formalism

The MZ formalism originally arose in classical statistical mechanics [6,5], and has been used in physical applications 
ranging from fluid dynamics to materials science and molecular dynamics (see, e.g., [5,24,10,25–33]). As we will discuss in 
Sect. 3.3, it also applies to systems with random forcing and/or (bounded) delays. Here we review a discrete MZ theory [34].

The starting point of Mori-Zwanzig formalism is the Mori-Zwanzig equation, which asserts that there exists a sequence of 
functions ξ1, ξ2, · · · :X →Rd such that for n ≥ 0,

xn+1 = P F (xn) +
n∑

k=1

�k(xn−k) + ξn+1(X0) (2.2a)

with

�k = P (ξk ◦ F ) and Pξn = 0. (2.2b)

In Eq. (2.2), P can be any projection operator. The first, “Markov” term is then the “best” approximation of F by functions 
in the range V of the projection P (more on this below). The second, “memory” term captures all non-Markovian effects 
representable in V . The last, “noise” term represents errors at each step, and are orthogonal to functions in V . We present 
a derivation below, and an alternate derivation via a dual equation in Appendix A.

To make use of the Mori-Zwanzig equation, one must first choose a projection operator P . A common choice is the con-
ditional expectation (Pϕ)(x) = Eμ[ϕ(X)|π(X) = x]. Another is finite rank projection: fix a collection of linearly independent 
functions ψ1(x), · · · , ψν(x) of x, then take P to be orthogonal projection onto their linear span, i.e.,

Pϕ(x) = 	(x) · 〈	,	〉−1 · 〈	,ϕ〉, (2.3)

where 〈 f , g〉 = ∫
f T · g dμ for matrix-valued f and g , and the columns of 	(x) = [ψ1(x) · · · ψν(x)] span V . With P as 

in Eq. (2.3), we can write P F = 	 · c0 and �k = 	 · ck for coefficient vectors ck . Eq. (2.2) then becomes

xn+1 =
∑
k≥0

	(xn−k) · ck + ξn+1. (2.4a)

Eq. (2.2b) now take the form

ck = 〈	,	〉−1 · 〈	,ξk ◦ F 〉 (2.4b)

and

〈ξn,	 ◦ π〉 = 0. (2.4c)

In this paper, we will mainly consider finite rank projections and a closely related “Wiener projection” in Sect. 3. See, e.g., 
[5,35,6,25] for discussions of the conditional expectation and other choices.

The Mori-Zwanzig equation is an exact description of the dynamics of xn . Without further approximation, it does not 
represent a reduction in model complexity. The equation does, however, highlight the interdependence of the projection 
P and the noise (ξn). To arrive at closed equations of motion for the relevant variables xn , it is necessary to choose P so 
that the noise terms (ξn) can be effectively modeled. A common approach is to choose P to be a projection onto the slow 
variables. One then appeals to scale separation and other physical considerations to justify modeling (ξn) by a stochastic 
process ηn , e.g., a stationary Gaussian process. The coefficients (ck) can be approximated by, e.g., perturbation techniques. 
The power spectrum of the noise and the memory kernel are related by so-called fluctuation-dissipation relations, of which 
Eq. (2.4b) is an example [36,6].
3
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As a physical example, one may consider the motion of heavy particle suspended in a fluid, a problem originally studied 
by Smoluchowski and Einstein [37]. The “system” consists of the heavy particle and the water molecules making up the 
surrounding fluid. Projecting onto the particle degrees of freedom, the Markov term is given by equation of motion for a 
free particle, the memory term gives rise to drag due to the fluid, and the noise term represents random forces due to 
thermal fluctuation of the surrounding fluid.

Orthogonality conditions (e.g., Eq. (2.4c)) play a key role in MZ theory and in Wiener filtering: they are equivalent 
to optimality in the least squares sense. In using reduced models to generate predictions, one often assumes the driving 
noise (i.e., the ξn in Eq. (2.4)) is independent of xm for n > m. Orthogonality conditions provide partial justification for this 
(standard) procedure. Eq. (2.4c) comes from Pξn = 0, but does not imply 	(xm) is uncorrelated with ξn for n > m. More on 
this in Sect. 3.

Derivation of the Mori-Zwanzig equation. The MZ equation can be driven as follows. We start with the Dyson formula

Mn+1 =
n∑

k=0

Mn−k P M(Q M)k + (Q M)n+1, (2.5)

where, as before, M is the Koopman operator and P is a projection on H whose range V are functions that depend only
on the relevant variables x; and Q = I − P is the orthogonal projection. Eq. (2.5) is readily proved by induction. To see how 
Eq. (2.4) follows from Eq. (2.5), apply both sides of Eq. (2.5) to the observation function π and evaluate at X0, yielding

(Mn+1π)(X0)︸ ︷︷ ︸
(I)

=
n∑

k=0

(Mn−k P M(Q M)kπ)(X0)

︸ ︷︷ ︸
(II)

+ ((Q M)n+1π)(X0)︸ ︷︷ ︸
(III)

. (2.6)

Define ξn = (Q M)nπ , so that Pξn = 0 for n ≥ 1. For Term (I), the definition of the Koopman operator M gives π(F n+1(X0)) =
π(Xn+1) = xn+1. For Term (III), we have (by definition) ξn+1(X0). For Term (II), we have

(Mn−k P M(Q M)kπ)(X0) = (P M(Q M)kπ)(Xn−k)

as before. Since M(Q M)kπ = Mξk = ξk ◦ F and the range of P consists of functions of x = π(X), we get

(Mn−k P M(Q M)kπ)(X0) = P (ξk ◦ F )(xn−k).

Combining all these and P Q = 0 yields Eq. (2.2).

2.3. NARMAX modeling

Whereas MZ theory seeks systematic derivations of reduced models, NARMAX (Nonlinear Auto-Regressive Moving Aver-
age with eXogenous input) is a generic approach to parametric data-driven modeling of time series [18,38,17]. A common 
version of the NARMAX model is

xn+1 = f (xn) + zn, (2.7a)

zn + ap−1zn−1 + · · · + a0zn−p = dq wn + · · · + d0 wn−q (2.7b)

+ 	(xn) · c1 + · · · + 	(xn−r) · cr,

where f and 	 are given functions, and the wi are independent identically distributed (IID) random variables, usually 
assumed to be Gaussian (as we do here). One can view xn+1 = f (xn) as a crude predictor of xn+1, and Eq. (2.7b) a corrector 
based on a model of the residuals zn . Note that like the MZ equation, Eq. (2.7) is non-Markovian.

In applications of NARMAX, the main task of the would-be modeler is to first choose the forms of f , 	 and the orders 
p, q, r, then determine ai , bi , and di by minimizing a suitable loss function. One common approach to parameter estima-
tion is least squares regression: let x̃n denote time series obtained from the full model (either by simulation or physical 
measurement), and define

x̂n+1 = f (̃xn) + z̃n, (2.8a)

z̃n + ap−1̃zn−1 + · · · + a0̃zn−p =	(̃xn) · c1 + · · · + 	(̃xn−r) · cr (2.8b)

The x̂n+1 is the one-step prediction based on x̃n, · · · , ̃xn−r . One then tunes (ai, bi) to minimize the mean squared error ∑
n ‖xn − x̂n‖2, possibly in combination with regularization techniques, e.g., Tikhonov regularization or a sparsity-inducing �1

term. The moving average coefficients dn are determined by fitting a stochastic process of the form dq wn + · · · + d0 wn−q

to the residual.
4
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Another approach to parameter estimation is based on maximum likelihood estimation (MLE). In this approach, one 
assumes the statistics of the noise (wn), e.g., independent N(0, I) random vectors, and infer the (ai, bi) and di jointly by 
maximum likelihood methods and variations thereof.

Whatever the method, we emphasize that the form of Eqs. (2.7) does not, by itself, determine a reduced model or a 
model reduction procedure. One must either specify the statistics of the noise term, or the loss function to be minimized. 
(And, for non-convex loss functions, the optimization procedure.) These choices can have a significant impact on the useful-
ness of the model so obtained.

3. Wiener projections

3.1. Definition and basic properties

We now set aside Mori-Zwanzig for a moment, and consider another way to conceptualize memory effects in model 
reduction based on Wiener filters [39,40]. Let un and vn be two zero-mean wide-sense stationary processes. The Wiener 
filter is the sequence (hn) that minimizes the mean-squared error (MSE):

E
(∥∥un − (v � h)n

∥∥2)
, (3.1)

where (v � h)n = ∑
k vn−k · hk denotes convolution, with hn = 0 for n < 0. (See Appendix B for more details.) It satisfies the 

orthogonality condition

cov(vm, rn) = 0 , n ≥ m, (3.2)

where rn is the residual un − ∑
k vn−k · hk , i.e., filter errors are uncorrelated with the data on which the filter output is 

based. Eq. (3.2) is equivalent to the minimum-MSE criterion.
We observe that the Wiener filter can be applied to model reduction as well: with Xn as in Eq. (2.1) and 	 as before, 

let hn be the causal Wiener filter for un = xn+1 = π(Xn+1) and vn = 	(xn). We then obtain xn+1 = ∑
k≥0 	(xn−k) · hk + rn+1

with cov(	(xm), rn) = 0 for n > m with rn playing the role of the residual rn in Eq. (3.2).
How is this Wiener filter view related to the MZ formalism? We now sketch an argument showing that Wiener-based 

model reduction is in fact a special case of the MZ equation, one with some attractive properties. Let 	n = 	(xn), and 
assume F is invertible so that M is invertible and unitary. Let P W be orthogonal projection onto the subspace

W = span(	 ∪ M−1	 ∪ M−2	 ∪ · · · ), (3.3)

where M−k	 is a short-hand for {M−kψ1, · · · , M−kψν}. Note P W = P∗
W , i.e., P W is self-adjoint. Since M−1 v ∈ W for all 

v ∈ W , we have

M−� P W = P W M−� P W , � ≥ 0. (3.4)

This implies Q W M−� P W = 0 or, upon taking adjoints, P W M� Q W = 0. The Dyson formula (2.5) for P W thus simplifies:

Mn+1 =
n∑

k=0

Mn−k P W M(Q W M)k + (Q W M)n+1 (3.5a)

= Mn P W M + (Q W M)n+1 (3.5b)

since P M(Q M)k = 0 for k ≥ 1. Applying both sides of Eq. (3.5b) to π , we obtain

xn+1 =
∑
k≥0

	(xn−k) · hk + ξn+1, (3.6a)

〈ξn,	m〉 = 0 , n > m. (3.6b)

Though Eq. (3.6a) and Eq. (2.4a) are formally identical, the orthogonality relation (3.6b) is strictly stronger than Eq. (2.4c). 
The reason is that for the finite rank projection in Sect. 2.2, the orthogonality relation means 

∫
ξn(X)T · 	(π X) dμ(X) = 0, 

i.e., the noise functions ξn are orthogonal to a finite dimensional subspace of H. In contrast, in Eq. (3.6b), the orthogonality 
relation EX0∼μ[ξn(X0)

T · 	(π X)] = 0 means the ξn is (in general) orthogonal to an infinite dimensional subspace of H, and 
is analogous to Eq. (3.2), where the expectation is with respect to the stationary measure μ on a suitably defined path 
space. The orthogonality (3.6b) is significant for two reasons. First, in stochastic models like NARMAX (2.7), one typically 
assumes the driving noise wm is independent of xn for m > n. While natural, this is not guaranteed by the MZ equation. 
Eq. (3.6b) does not imply such independence, either, but comes a step closer.1 Second, orthogonality relations like (3.6b) are 

1 For the analogous construction with P being conditional expectation (rather than finite rank projection), one can show that the (ξn) are martingale 
differences.
5
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equivalent to optimality in the sense of least squares. The MZ equation does not guarantee the stronger orthogonality (3.6b)
because it does not guarantee optimal estimation of xn+1 using 	(xn), 	(xn−1), · · · .

We refer to the projection P W and the associated decomposition (3.6) as the Wiener projection. Two comments: first, the 
lack of (explicit) memory terms in Eq. (3.5b) is not surprising because we have simply incorporated all relevant memory 
effects in the definition of P W itself, and also assumed the availability of that entire past history at the initial time n = 0, 
so there is nothing more for a memory term to capture. Second, though the subspace W is defined in terms of M−1 and 
its powers, in practice one does not need to compute M−1 or F −1 in working with W as one can simply keep track of the 
(recent) history in stepping forward the reduced model. So our formalism can be safely applied to dissipative dynamical 
systems, for which F −1 may be extremely unstable.

In addition to the orthogonality (3.6b), the Wiener projection has the following properties:

(i) Eq. (3.4) implies the existence of h0, h1, · · · such that Eqs. (3.6) hold, and if the vectors ∪k≥0 M−k	 are linearly inde-
pendent, then the coefficients (hk) are unique. (The coefficients hn may be ill-conditioned functions of the data if the 
basis functions are nearly degenerate. This is an important but nontrivial issue, which we plan to explore in future 
work.)

(ii) The correlation matrices 〈ξm,	n〉 and 〈ξm, ξn〉 are functions of m − n, i.e., ξm and 	n are jointly wide sense stationary. 
(The process (	n) is stationary by assumption.)

The first claim is a direct consequence of the preceding discussion. For the second claim, first we show that ξn =
(Q W M)nπ is wide sense stationary: by taking adjoints in Eq. (3.4), we get P W M� = P W M� P W . A short calculation2 yields

M� Q W = Q W M� Q W , � ≥ 0. (3.7)

Repeated application of Eq. (3.7) yields

(Q W M)nπ = Q W M Q W M Q W · · · Q W M Q W Mπ (3.8a)

= Mn−1 Q W Mπ (3.8b)

= Mn−1ξ1 (3.8c)

= ξ1 ◦ F n−1 , n = 1,2, · · · . (3.8d)

Thus, 〈ξm, ξn〉 = 〈ξ1 ◦ F m−1, ξ1 ◦ F n−1〉. Since the probability distribution μ is F -invariant, we have

〈ξ1 ◦ F m−1, ξ1 ◦ F n−1〉 =
∫

ξ1(F m−1(x)) · ξ1(F n−1(x))T dμ(x)

=
∫

ξ1(F m−n(x)) · ξ1(x)T dμ(x)

= 〈ξ1 ◦ F m−n, ξ1〉,
i.e., ξ1, ξ2, · · · is wide sense stationary.

To see that 〈ξm,	n〉 is also a function of m − n, observe

〈ξm,	n〉 = 〈ξ1 ◦ F m−1,	0 ◦ F n〉 (3.9a)

= 〈ξ1 ◦ F m−n−1,	0〉, (3.9b)

using Eq. (3.8) and the invariance of μ. This can also be established by a more “operator-theoretic” argument: observe

P W M−m(Q W M)n = P W M−m Mn−1 Q W M (3.10a)

= P W Mn−m−1 Q W M. (3.10b)

(Eq. (3.10a) follows by repeated use of Eq. (3.7) with � = 1.) Using ξn = Mn−1ξ1 (see Eq. (3.8c)) and the definition of P w , 
we see that 〈	m, ξn〉 is a function of m − n.

2 Since P W M� = P W M�(P W + Q W ) = P W M� P W + P W M� Q W . Combined with P W M� = P W M� P W , we have P W M� Q W = 0. From this, we get M� Q W =
(P W + Q W )M� Q W = P W M� Q W + Q W M� Q W = Q W M� Q W .
6
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3.2. Deriving NARMAX via rational approximations

Eq. (3.6) would not reduce computational cost unless the sum in k can be truncated. Simply keeping a small number of 
terms, however, may not provide a good approximation. Put another way, to use Eq. (3.6) as the basis for model reduction, it 
is necessary to find an effective way to parametrize the space of filters (hn). To do this, we use an idea from MZ theory [6]. 
Let

H(z) =
∑
n≥0

hnz−n (3.11)

denote the z-transform of (hn). This is the discrete-time analog of the Laplace transform; its properties are summarized in 
Appendix B. The z-transforms X(z), 	(z), and 
(z) of (xn), (	n), and (ξn), respectively, are similarly defined. Then using 
the convolution property of the z-transform (see Appendix B), we have the formal relation

X(z) = 	(Z) · H(z) + 
(z). (3.12)

In applications of MZ theory to, e.g., statistical physics, rational approximations of the transfer function H(z) are frequently 
effective [36,6]. This suggests the (uncontrolled) approximation

H(z) ≈ B(z)/A(z), (3.13a)

with

A(z) = zp + ap−1zp−1 + · · · + a0 and B(z) = br zr + · · · + b0 . (3.13b)

Neglecting convergence and other mathematical issues for now, if we substitute the ansatz H(z) = B(z)/A(z) into Eq. (3.12), 
we obtain X(Z) = 	(z) · B(z)/A(z) + 
(z). This relation among z-transforms is equivalent to a recurrence relation. To see 
this, define yn = ∑

n≥0 	n−k · hk . Then Y (z) = 	(z) · H(z), so that A(z)Y (z) = 	(z) · B(z). Inverting the z-transform yields 
yn + ap−1 yn−1 + · · · + a0 yn−p = 	n−p+r · br + · · · + 	n−p · b0. Summarizing, this suggests Eq. (3.6a) with the ansatz
H(z) = B(z)/A(z) can be written

xn+1 = yn + ξn+1, (3.14a)

yn + ap−1 yn−1 + · · · + a0 yn−p = 	n−p+r · br + · · · + 	n−p · b0. (3.14b)

If we set one column of 	 to be f in Eq. (2.7), Eq. (3.14) is essentially Eq. (2.7).
Modulo transients, Eq. (3.14b) will correctly compute yn provided the recursion is stable in the sense that bounded 	n

lead to bounded yn . This holds if and only if the roots of the polynomial A(z) all lie strictly within the unit circle. In this 
paper, we refer to the condition hn → 0 as the decaying memory condition. Decaying memory is necessary for Eq. (3.6) to 
be meaningful, for otherwise the reduced model would be sensitive to information in the distant past. We note decaying 
memory is necessary but not sufficient for the overall numerical stability of the reduced model.

If the decaying memory condition can be enforced, Eq. (3.14b) provides an efficient way to compute the convolution 
in Eq. (3.6a), at a cost of not satisfying Eq. (3.5b) exactly. As a result, there may be additional memory-like corrections. 
A detailed analysis of this is left for future work.

Eq. (3.12) is purely formal in that in our context, where the (xn), (	n), and (ξn) are stationary time series, the z-
transforms do not converge for any z ∈ C. A more careful treatment uses the idea of power spectra. As this is useful later 
in the paper, we recall the notion here.

For a stationary stochastic process (un), its spectral power density (or simply power spectrum) is the function Suu(θ) =∑∞
n=−∞ Cuu(n)einθ , where Cuu(n) is the autocovariance function (ACF) cov(un, u0). Similarly, for two stationary stochastic 

processes (un) and (vn), their cross power spectrum Suv(θ) is defined by 
∑∞

n=−∞ Cuv(n)einθ , where Cuv(n) = cov(un, v0)

is the cross correlation function (CCF). In our context, we can view xn , 	n = 	(xn), and ξn are (possibly matrix-valued) 
zero-mean (wide-sense) stationary time series satisfying xn+1 = ∑

k≥0 	n−k · hk + ξn with cov(xm, ξn) = cov(	m, ξn) = 0 for 
all n > m. Then, using the properties of power spectra and z-transforms, one can show

Sxx(θ) = H∗(e−iθ )S		(θ)H(e−iθ ) + H∗(eiθ )S	ξ (θ) + Sξ	(θ)H(e−iθ ) + Sξξ (θ). (3.15)

Eq. (3.11) typically does not converge for all z ∈C; we assume the domain of convergence contains the unit circle, so that 
Eq. (3.15) makes sense.

Loss function and nonlinear regression. Eq. (3.14) does not, by itself, fully specify a dynamical model: to have a well-defined 
model, one needs to specify, e.g., the statistics of the (ξn). For example, we can approximate ξn by a moving average of 
the form dq wn + · · · + d0 wn−q , where the wn are independent N(0, I) random vectors; this then gives a NARMA(X) 
representation (2.7). Alternatively, one can prescribe the properties of the (ξn) implicitly by specifying the loss function to 
7
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be minimized, which we now discuss. We observe that the rational approximation above implies p = q, simplifying order 
selection.

Since Mori-Zwanzig aims to minimize the difference between the full and reduced models with respect to the L2 norm, 
a natural choice is to minimize the mean squared error

E(a,b) = 1

N

N−1∑
n=0

∥∥∥̃xn+1 − x̂n+1
(
	̃1, · · · , 	̃n;a,b

)∥∥∥2
(3.16)

a = (ap−1, · · · , a0) and b = (bq, · · · , b0) are the coefficients of A(z) and B(z) in Eq. (3.13a), (̃xn) are data obtained from the 
full model (say by simulation), and 	̃n = 	(̃xn), and where the one-step prediction ̂xn is here defined by

x̂n+1(	̃1, · · · , 	̃n) =
∑
k≥0

	̃n−k · hk . (3.17)

Because of the parametrization H(z) = B(z)/A(z), the mean squared error E(a, b) depends nonlinearly on a and b. This leads 
to two3 possible approaches:

– Nonlinear regression, i.e., tuning a and b to minimize E(a, b) in Eq. (3.16).
– Finding hn directly by solving a (potentially very large) linear programming problem, then finding a good rational 

approximation H(z) ≈ B(z)/A(z).

In either case, we then fit a noise model to the residuals from the nonlinear regression.
For high dimensional problems, the second approach is computationally more challenging. In this paper, we use the 

nonlinear regression approach. Numerical details are described in Sect. 4.

Multistep form and linear regression. Modulo transients, Eq. (3.14) is equivalent (see Appendix B) to the multistep recursion

xn+p+1 + ap−1xn+p + · · · + a0xn+1 = 	(xn+r) · br + · · · + 	(xn) · b0 + ξn+p+1, (3.18)

where ξn+p+1 = ξn+p+1 + ap−1ξn+p + · · · + a0ξn+1. Unlike Eq. (3.14), this formulation does not introduce any auxiliary 
variables. The noise (ξn) in Eq. (3.18) is related to the (ξn) in Eq. (3.14) by Sξξ (θ) = |A(eiθ )|2 Sξξ (θ). This means there is 
no simple orthogonality relation between ξn and 	n . For these reasons, Eq. (3.18) is less convenient than Eq. (3.14) for 
model fitting. Both require p vectors x1, · · · , xp ∈ Rd as initial conditions. In practice, these initial conditions can have a 
measurable impact on noise models; we discuss this and other implementation issues in Sect. 4.

Eq. (3.18) suggests an alternative loss function: compute the one-step predictions using

x̂n+p+1 + ap−1̃xn+p + · · · + a0̃xn+1 = 	(̃xn+r) · br + · · · + 	(̃xn) · b0, (3.19)

and minimizing the left and right hand sides, i.e.,

E∗(a,b) = 1

N

N−1−p∑
n=1

∥∥∥̃xn+p+1 −
p−1∑
j=0

a j̃xn+ j+1 −
r∑

j=0

b j	̃n+ j

∥∥∥2
. (3.20)

One can then fit the residual by a noise model, e.g., by a power spectrum method (see Sect. 4.4) or a moving average model. 
The difference between minimizing E(a, b) in Eq. (3.16) and E∗(a, b) above is that the latter entails only linear regression, 
which can be computed very quickly when the number of time lags is not large. Also, whereas Eq. (3.17) depends on the all 
available past history, Eq. (3.19) depends only on the past r steps. However, minimizing E∗(a, b) may produce such effective 
models because it neglects long-range correlations in the data.

Finally, we observe that in Eq. (3.18), if the sequence (ξn) is assumed to be IID Gaussian, the resulting model is what is 
often referred to as the NARMA model in time series analysis (see, e.g., [41,38]). In this case, one can infer the coefficients 
a and b by the conditional maximal likelihood method, which entails minimizes the cost function

E(a,b | ξ1, · · · , ξp) = 1

N

N−1−p∑
n=1

∥∥∥̃xn+p+1 −
p−1∑
j=0

a j (̃xn+ j+1 − ξ̃n+ j+1) −
r∑

j=0

b j	̃n+ j

∥∥∥2
. (3.21)

In the above, the sequence (̃ξn)n>p can be computed recursively from data for each given pair of (a, b). This cost function 
is similar to E(a, b), and the optimization is similar to the nonlinear regression above: instead of using (hn) above, one 
computes the sequence (̃ξn)n>p in each optimization step (see [8] for more details).

3 In standard approaches to Wiener filtering, one makes use of the power spectra Sxx , Sxψ , and Sψψ and their meromorphic continuations and solves 
the filtering problem by Wiener-Hopf techniques (see, e.g., [40]). In the context of data-driven modeling, direct minimization of E(a, b) is more attractive 
because of the various sources of statistical error.
8
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3.3. Random dynamical systems and systems with delays

Model reduction techniques are routinely applied to both deterministic and random dynamical systems, as well as sys-
tems with delays. The MZ formalism applies to both random dynamical systems and to discrete-time systems with bounded 
delays, as we now explain. Our construction here is related to the “shift operator” discussed in [42].

We first explain how the MZ formalism applies to random dynamical systems. Consider the Euler-Maruyama discretiza-
tion4 of a stochastic differential equation (SDE) of the form u̇t = f (ut) + ẇt :

un+1 = un + f (un)�t + √
�t wn , (3.22)

where the wn are independent N(0, I) random vectors. The above has the general form

un+1 = F (un, wn). (3.23)

Let w = (· · · , w−1, w0, w1, · · · ) denote the entire history of the forcing. A standard way to rewrite Eq. (3.22) as an au-
tonomous dynamical system (Eq. (2.1) above) is to augment the state un with the history of the forcing w . In dynamical 
systems language, such constructions are known as “skew products.” Here we sketch the key ideas, and refer interested 
readers to, e.g., [43–45] for mathematical details (see also [46,47] for extensions to stochastic differential equations).

Given a forcing sequence w , we define σ(w) to be the sequence whose nth entry is wn+1, i.e., σ(w)n = wn+1. In 
other words, σ(w) is sequence w shifted by 1 in time. If we shift n times, then wn is moved into position 0, so that 
π0(σ

n(w) = wn , where π0(w) = w0.
Using this notation, we can rewrite Eq. (3.23) as un+1 = F (un, π0(σ

n(w))), where w is a given realization of the forcing 
sequence. Now denote w(n) = σ n(w); then {w(n) | n ∈ Z} is a sequence of forcing sequences, all related to each other by 
time shifts. Then

un+1 = F
(

un,π0(w(n))
)
, (3.24a)

w(n+1) = σ(w(n)). (3.24b)

Let X be the space of all pairs (u, w), i.e., X is the state space of the discretized SDE augmented with its forcing history. 
Then Eq. (3.24) is a dynamical system of the form Eq. (2.1), albeit one with an infinite-dimensional state space X. This does 
not prevent one from applying the Mori-Zwanzig formalism. In practice, one does not need to (and generally cannot) keep 
track of the entire forcing history w , and a fragment of it is often sufficient. Note that within this framework, observation 
functions 	 can depend on both the state un and the forcing history w(n) .

Finally, we note that an invariant probability distribution μ, related in a natural way to the stationary distribution of 
Eq. (3.22), can be constructed on this augmented state space; see, e.g., [43,44].

As for general delay terms, for example terms of the form 	(xk, xk−�) for � ≤ L (which appear in our model for the 
Burgers equation later in the paper), one can use a standard construction: as in Eq. (2.1), let F be a given dynamical system 
with state space X, and replace the state space X by the (L + 1)-fold cartesian product X=XL+1, and replace F by a map 
F on X with

F (X) = F (X0, · · · , XL) = (F (X0), X0, · · · , XL−1) (3.25)

for X = (X0, · · · , XL) ∈ X. This constructions can be combined with the skew product construction described earlier to 
handle stochastic systems with delays.

4. Numerical implementation

This section addresses the problem of fitting models of the form (3.14) to data. We take a two-step approach: we first 
tune the coefficients a and b of the polynomials A(z) and B(z), respectively, to minimize E(a, b) in Eq. (3.16); we then use 
a stationary Gaussian process to model the residuals. Sects. 4.1 and 4.2 concern the decaying memory constraint. Sect. 4.3
discusses other details of optimization, and Sect. 4.4 noise modeling.

We have implemented the algorithms described here and the examples of Sect. 5 in Julia version 1.4 [48]. For numerical 
optimization, we used the NLopt.jl package [49]. The source code is being prepared for public release, and will be 
available at https://github .com /kkylin.

4 The ideas we introduce here are quite general; we focus on Euler-Maruyama for the sake of simplicity.
9
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4.1. Decaying memory constraint and the second-order cascade

To fit a model of the form Eq. (3.6) to data, we will need to enforce the decaying memory condition hk → 0 for two 
reasons. First, the decaying memory condition is necessary for the reduced model to be meaningful. Second, while we can 
compute one-step predictions directly using Eq. (3.17), either directly or by the fast Fourier transform, the computational 
cost will be quite high for high dimensional problems. It would be much more efficient if we can implement the convolution 
indirectly by making use of Eq. (3.14), i.e., compute the one-step prediction by

x̂n+1 = yn, (4.1)

yn + ap−1 yn−1 + · · · + a0 yn−p = 	(̃xn−p+r) · br + · · · + 	(̃xn−p) · b0.

But as discussed earlier, we need the decaying memory condition to ensure these recursions will correctly compute yn . The 
challenge is that the loss function E(a, b) is highly nonlinear in a and b. Because the decaying memory condition involves 
the roots of A(z) in Eq. (3.13a), it exacerbates the problem. Our general approach is to reformulate Eq. (3.14) so that the 
decaying memory constraint becomes easier to implement, at the cost of making the cost function highly non-convex. We 
then fit reduced models to data using this representation by numerical optimization. We have found this to be sufficient for 
the examples in this paper, though more work needs to be done to ensure its robustness and efficiency for more general 
problems.

Consider a model of the form Eq. (3.14) given coefficients, and suppose for simplicity that A(z) has real scalar coefficients. 
We begin with the observation that for a quadratic polynomial z2 + αz + β , its roots lie inside the unit disc if and only 
if (α, β) lies inside the triangle in the αβ-plane with vertices (±2, 1) and (0, −1). That is to say, for such an A(z), the 
decaying memory condition consists of three linear inequalities. To make use of this observation for non-quadratic A(z), we 
factor A(z) into a product of quadratic factors when p = deg(A) is even, and quadratic factors and one linear factor if p is 
odd, i.e.,

A(z) =
p/2∏
i=1

(z2 + αi z + βi) or A(z) = (z + α0)

�p/2�∏
i=1

(z2 + αi z + βi). (4.2)

In this form, the decaying memory condition is naturally expressed as a system of linear inequalities, which are easily 
imposed when performing numerical optimization.

In view of the convolution theorem for z-transforms, the quadratic factorization of A(z) is equivalent to representing the 
linear filter with transfer function 1/A(z) as a cascade of second-order filters. To see this, suppose (for simplicity) that p = 2s. 
We introduce auxiliary variables (zn

i ) for i = 1, · · · , s (these variables zn
i differ from the z in z-transforms), and suppose they 

satisfy

Stage 1 zn
1 + α1zn−1

1 + β1zn−2
1 = 	n−p+r · br + · · · + 	n−p · b0

Stage 2 zn
2 + α2zn−1

2 + β2zn−2
2 = zn

1

...
...

Stage s zn
s + αszn−1

s + βszn−2
s = zn

s−1

. (4.3a)

We claim that if

xn+1 = zn
s + ξn+1 (4.3b)

then Eq. (4.3) is equivalent to Eq. (3.14), modulo transients. To see this, observe that (neglecting initial conditions) we have

(1 + αi z
−1 + βi z

−2)Zi(z) = Zi−1(z) , i = 2, · · · , s

(1 + α1z−1 + β1z−2)Z1(z) = z−p	(z) · B(z).

Putting it all together (and remembering p = 2s) gives Zs(z) = 	(z) · B(z)/�s
i=1(z2 + αi z + βi) = 	(z) · B(z)/A(z), and 

inverting z-transforms yields Eq. (4.3). The equivalence is up to transients because we have neglected initial conditions in 
this discussion, and the argument is valid only if the decaying memory condition holds. The recursion in Eq. (4.3) is explicit 
when p ≥ q. In the notation of Eq. (3.14), the output of the last stage gives yn , i.e., yn = zn

s .

Example. For p = r = 4, we have two stages:

Stage 1 zn
1 + α1zn−1

1 + β1zn−2
1 = 	n · b4 + · · · + 	n−4 · b0

Stage 2 zn + α zn−1 + β zn−2 = zn
(4.4)
2 2 2 2 2 1
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In this case, it is easy to show directly that

yn + a3 yn−1 + · · · + a0 yn−4 = 	n · b4 + · · · + 	n−4 · b0 (4.5)

where yn = zn
2 and

z4 + a3z3 + a2z2 + a1z + a0 = (z2 + α1z + β1) · (z2 + α2z + β2) , z ∈C. (4.6)

The corresponding reduced model can be written as a system

xn+1 =yn + ξn+1

yn = − (
a3 yn−1 + · · · + a0 yn−4

) + (
	n · b4 + · · · + 	n−4 · b0

)
.

With p = r = 0, we have a one-step (Galerkin) recursion xn+1 = 	n · b0 + ξn+1. Similarly, with p = r = 1, we have xn+1 =
yn + ξn+1 and yn = −a0 yn−1 + 	n · b1 + 	n−1 · b0, and setting a0 = 0 yields xn+1 = 	n · b1 + 	n−1 · b0 + ξn+1.

4.2. Initializing and running cascade-form models

We use the cascade-form model to impose the decaying memory condition. This is needed both for running fitted 
reduced models and, as we explain later, for fitting models to data. Here, we discuss how to initialize and run such models.

Running the model to produce predictions entails carrying out the recursions in Eq. (4.3), at each point computing the 
predictors 	n = 	(xn) with xn = yn−1 + ξn = zn−1

s + ξn . Though derived from Eq. (3.14), Eq. (4.3) is quite different in form. 
Here we examine Eq. (4.3) more closely, to clarify the flow of information in the algorithm and other details.

It is useful to first visualize Eq. (4.3) as a computation graph, a fragment of which is shown here:

Step n − 2 Step n − 1 Step n

Stage s − 1 · · · zn−2
s−1 zn−1

s−1 zn
s−1

Stage s · · · zn−2
s zn−1

s zn
s

βs

αs

(For legibility, we have drawn the edges going into zn
s as solid lines; all others are dotted.) The variable zn

s at time n and 
stage s depends on the corresponding variable zn

s−1 in the previous stage, as well as the two previous steps (zn−1
s and zn−2

s ) 
in the same stage.

Once we have initial conditions, Eq. (4.3) can be iterated to generate sample paths. The first thing is then to find the 
initial values zp−1

i and zp−2
i for i = 1, · · · , r from the given data x̃1, · · · , ̃xN . An effective procedure is suggested by the 

computation graph: we set

ỹ0 = x̃1 , ỹ1 = x̃2 , · · · , ỹp−1 = x̃p (4.7)

in the notation of Eq. (3.14) and Eq. (4.3). Assuming the coefficients αi and βi have already been determined, the com-
putation graph shows that knowing the values at stage s for n = 1, 2, · · · , p (which is the same as knowing y1, · · · , yp

in Eq. (3.14)) allows one to solve for the values at stage s − 1 for n = 3, 4, · · · , p. Iterating, this means we can determine 
zp−1

i , zp
i for all stages i. From this, it is also straightforward to see that if y0 = · · · = yp−1 = 0, then zp−1

i = zp−2
i = 0 for 

i = 1, · · · , r, so that the initial conditions for Eq. (4.3) are uniquely determined by those of Eq. (3.14).
Once the initial data have been determined and noise generated (as described in Sect. 3), the recurrence relations (4.3)

can be iterated to generate predictions from the reduced model.

4.3. Fitting models to data

We now describe our overall optimization strategy:

(i) From the time series ̃x1, · · · , ̃xN , compute the observations 	̃n = 	(̃xn).
(ii) For given parameter vectors α, β, b, use the initial values x̃1, · · · , ̃xp to determine the initial values zp−2

i , zp−1
i , i =

1, · · · , r, for Eq. (4.3).
11
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(iii) Generate one-step predictions ̂xn+1 by Eq. (4.1) for n = p, · · · , N , where H(z) = B(z)/A(z).

In the cascade representation, the MSE has the form

E ′(α,β,b) = 1

N

N∑
n=p+1

∥∥∥̃xn+1 − x̂n+1
(
	̃1, · · · , 	̃n;α,β,b

)∥∥∥2
(4.8a)

with the decaying memory constraints

βi ≤ 1 and βi ≥ ±αi − 1 . (4.8b)

(This says that (αi, βi) lies within a triangle in the α-β plane with vertices (±2, 1), (0, −1). As asserted in Sect. 4.1, one 
can check that this is equivalent to the roots of z2 + αi z + βi lying in the unit disc.) This can be minimized by direct 
optimization. One then finds the residuals

ξ̃n = x̃n+1 − x̂n+1
(
	̃1, · · · , 	̃n;α,β,b

)
(4.9)

and fit a noise model as before.
One can actually further reduce the dimensionality of the optimization problem; this is described below. But first, we 

note that Step (iii) above is more efficiently implemented by iterating

Stage 1 zn
1 + α1zn−1

1 + β1zn−2
1 = 	̃n−p+r · br + · · · + 	̃n−p · b0

Stage 2 zn
2 + α2zn−1

2 + β2zn−2
2 = zn

1

...
...

Stage s zn
s + αszn−1

s + βszn−2
s = zn

s−1

Output x̂n+1 = zn
s

(4.10)

Modulo transients (see “initial conditions” below), this computes the convolutions in Eq. (3.17). Note this iteration can only 
be carried out if α, β satisfy the decaying memory condition.

To further reduce the dimensionality of the nonlinear optimization problem, we observe that for given (α, β), the func-
tion b �→ E ′(α, β, b) can be minimized by linear regression. For a given (α, β), we thus define b̂(α, β) to be the (unique) 
minimizer of b �→ E ′(α, β, b). We then minimize E ′(α, β, ̂b(α, β)) by nonlinear optimization. For the examples in this paper, 
this is done using the BOBYQA algorithm[50] as implemented in the NLopt package [49].

Initial conditions. The recursions in Eq. (4.10), viewed as a system of non-autonomous linear recurrences with 	̃n as time-
dependent forcing, have their own initial conditions. Neglecting these “internal” initial conditions during fitting, for example 
by setting them all to zero, can lead to worse fits. Without accounting for initial conditions, the residuals also exhibit longer 
transients before approaching stationarity, which can complicate the construction of noise models.

To estimate initial conditions for Eq. (4.10), we exploit the linearity of Eq. (4.10) in the variables zn
i by decomposing 

the zn
i into the sum of a homogeneous solution zh,n

i and a particular solution zp,n
i , with zp,n

i satisfying Eq. (4.10) with zero 
initial conditions and zh,n

i solving Eq. (4.10) with 	̃n ≡ 0. (In linear systems theory, these are the “zero state response” and 
“zero input response,” respectively.) This leads to a linear regression problem for the initial values {zh,0

i , zh,1
i | i = 1, · · · , s}, 

which can be solved jointly with the computation of ̂b(α, β) via linear regression.

Remarks on optimization and related issues.

– Cascade-form models, decaying memory, and optimization. Eq (4.3) enables us to impose the decaying memory constraint 
reliably during optimization. However, the decomposition of A(z) into quadratic factors introduces a symmetry: the 
value of the loss function is invariant when the quadratic factors are permuted. This means there are many equivalent 
global minima, which introduce many saddles into the landscape. While any of the symmetric global minima will give 
equivalent reduced models, the presence of the saddles can potentially slow down optimizers.

– Other optimization strategies. For simplicity, we have opted for direct nonlinear minimization of E ′(α, β, ̂b(α, β)) in this 
paper. It may be possible to improve the efficiency of the optimization by exploiting the structure of Eq. (4.3) or the 
multistep representation (Eq. (3.18) above) by using, e.g., iterative least squares.

– An implementation detail. For interested readers, we describe the computation of b̂(α, β) by linear regression. We run 
the matrix version of the recursion

Stage 1 Zn
1 + α1 Zn−1

1 + β1 Zn−2
1 = 	̃n

Stage i > 1 Zn + α Zn−1 + β Zn−2 = Zn ,

(4.11)
i 2 i 2 i i−1
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for i = 2, · · · , r and setting Yn = Zn
s ; this is a matrix version of Eq. (4.10) with q = 0 and b0 = I . The resulting Yn and 

Zn
i are matrix-valued, with the same shape as 	̃n . By exploiting the commutativity of the convolution operators defined 

by B(z) and 1/A(z), one can show that the desired one step prediction is given by

x̂n+1 = Yn−p+q · bq + · · · + Yn−p · b0 . (4.12)

Combining this with the definition of E ′(α, β, b) lets us compute ̂b(α, β) via linear regression.

4.4. Noise model

To construct a stochastic process ηn to model the residuals ξn , there are a few standard options:

(i) moving average representation, i.e., ηn = dq wn + · · · + d0 wn−q with independent wi ∼ N(0, I);
(ii) estimating the power spectrum of ξn and generating a stationary Gaussian process matching the power spectrum;

(iii) constructing a linear SDE and fitting it to ξn by, e.g., maximum likelihood.

In earlier work, we have used a moving average representation together with a MLE to infer the coefficients a and b
simultaneously with the coefficients of the moving average. In this paper, because we want to compare nonlinear regression 
with other approaches, the power spectrum method was found to be simpler.

After finding optimal values for ai , bi , and the initial yi , we fit a stationary Gaussian process ηn to the residuals ̃ξn+1 =
x̂n+1 − x̃n+1, by a random Fourier series approximating a Wiener integral:

ηn = 1√
2π

M−1∑
j=0

f ( j�θ) e−inj�θ w j

√
�θ

D−−−−→
M→∞

1√
2π

2π∫
0

f (θ) e−inθ Ẇθ dθ, (4.13)

where �θ = 2π/M , the w j are independent standard normal random variables (in the complex case, Re(w j) and Im(w j)

are independent with variance 1/2), Ẇθ is white noise on the circle S1, and f (θ) is a square root of the spectral power den-
sity, i.e., Sξξ (θ) = f (θ) f (θ)∗ . When ηn takes on values in Rd , then Sξξ and f are d × d matrices and Ẇθ is d-dimensional. 
The power spectrum can be estimated from data by the periodogram method (see, e.g., [51] and references therein). More 
efficient and accurate sampling methods are available [52], but we have found the random Fourier series above to be 
sufficient the residuals (ξn) are relatively small, as occurs in many examples (including ours). Whatever the method, the 
resulting reduced models will only satisfy the orthogonality conditions approximately.

5. Examples

We now consider two concrete examples. In addition to illustrating the methods described in earlier sections, there are 
two specific questions we would like to address:

– How effective is the model reduction method based on nonlinear regression (as described in Sect. 3.2)?
– How does the nonlinear regression compare to the linear regression described in Sect. 3.2?

We would also like to see how the least squares based nonlinear regression compare to the MLE used in [53].

5.1. Kuramoto-Sivashinsky (KS) PDE

The KS equation

Ut + U Ux + Uxx + Uxxxx = 0 (5.1)

is a prototypical model of spatiotemporal chaos. Here, we consider Eq. (5.1) with 0 ≤ x ≤ L and periodic boundary conditions. 
In Fourier variables uk(t), Eq. (5.1) is

u̇k = − iλk

2

∑
�

u�uk−� + (λ2
k − λ4

k )uk , λk = 2πk

L
. (5.2)

The lowest ≈ L/2π modes are linearly unstable. This long-wave instability and its interaction with the quadratic nonlinearity 
lead to sustained chaotic behavior, with positive Lyapunov exponents and exponential decay of correlations [54]. NARMAX 
modeling of Eq. (5.1) was studied in [53], using likelihood-based parameter estimation and a slightly different form of 
NARMAX. Here, we use the least squares procedure. Following [53], we set L ≈ 21.55, leading to 3 linearly unstable modes 
and a maximum Lyapunov exponent of ≈ 0.04 (Lyapunov time ≈ 25). In this regime, time correlation functions exhibit 
13
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Fig. 1. KS solutions. Panel (a) shows results computed using the 108-mode truncation (�t = 10−3) (left), the 5-mode reduced model (�t = 0.1) (middle), 
and the 5-mode truncation (�t = 10−3) (right). In (b), we plot two Fourier modes as functions of time, with 90% confidence intervals for the reduced 
model. Panel (c) shows the energy spectrum. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

complex oscillations instead of the simple exponential decay often seen in strongly chaotic systems (Fig. 2(a)), providing a 
nontrivial testbed for model reduction.

Eq. (5.1) is readily solved by truncating the Fourier series, provided the cutoff is large enough. Here, we take as full 
model the 108-mode truncation; numerical tests show that KS statistics are insensitive to the cutoff beyond this. Fig. 1(a) 
shows a sample solution of Eq. (5.1) using this 108-mode truncation (“full”). By comparison, the 5-mode truncation with 
the same initial conditions (“truncated”) diverges rapidly, and fails to reproduce the energy spectrum (Fig. 1(c)).

Reduced model. To construct a reduced model using the lowest K = 5 Fourier modes, we follow the procedure outlined 
in Sect. 3. The first step is to generate data from the full model, which we do by numerically integrating the 108-mode 
truncation using a 4th-order exponential time-differencing Runge-Kutta (ETDRK4) method [55,56] with timestep �t = 10−3, 
for 108 steps. We observe the first K = 5 Fourier modes at every 100 steps; the observation interval δ = 0.1 is the timestep 
for the reduced model. We drop the first half of the data to ensure stationarity.

We use the form of the reduced model in Eq. (3.14) with xn corresponding to un = (un
1, u

n
2, . . . , u

n
K ); see Appendix C.1

for a detailed description of the model. To select the orders p and r, we tried a variety of small values until a combination 
is found that produces a stable reduced model. For the function 	(u), we use three groups of functions:

	a
n− j = un− j ,

	b
n− j = R�t(un− j) ,

	c
n− j,k =

∑
|k−l|≤K ,K<|l|≤2K

or |l|≤K ,K<|k−l|≤2K

ũn−1
l ũn− j

k−l for k = 1, · · · , K .
(5.3)

Here the first two groups 	a and 	b come from the Galerkin truncation. The third group in form of 	c represents that in-
teraction between the unresolved high modes and the resolved low modes, in which the high modes ̃u , defined in Appendix 
C.1d, is motivated by the theory of approximate inertial manifolds. In terms of the formalism of Sect. 3.1, the observation 
function 	(u) is a K × (2K + K 2) matrix whose entries consist of the terms given above, where K is the number of relevant 
Fourier modes. Here, we use K = 5.

Finally, the reduced model is fit to data by the procedure outlined in Sect. 4. As was found in [53], not all combinations 
of p and r lead to stable reduced models. Indeed, we have experimented with “replaying” the residuals, i.e., compute the 
residuals ̃ξn as in Sect. 4, then running the reduced model with ̃ξn+1 in place of the noise term. In the absence of round-off, 
one would simply obtain xn = x̃n , i.e., reconstruct the original time series. Instead, for some choices of (p, r), round-off errors 
were rapidly amplified. Here, we use the pair p = r = 3, which is found to strike a balance between accuracy and efficiency. 
As measured by the product of the mode and step counts, the reduced model represents an over 100-fold reduction in 
computational cost.

Results. Fig. 1(a) compares the full model (“full”), the reduced model with p = r = 3 (“reduced”), and the 5-mode truncation 
with �t = 10−3 (“truncated”). As one can see, the reduced model reproduces the full solution up to t � 50, about 1.8× the 
Lyapunov time, consistent with [53]. In contrast, the 5-mode truncation is accurate for a fraction of that time. Fig. 1(b) takes 
a closer look at selected Fourier modes. For the reduced model, 100 independent realizations are run, and the resulting 
ensemble is used to estimate confidence intervals. Shown is the mean (dashed, red), and 90% confidence intervals. Though 
the noise terms have amplitudes ≤ 10−4, they are rapidly amplified by exponential separation of trajectories due to the 
14
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Fig. 2. KS statistics. In all panels, solid blue is the full model, dashed red is the reduced model, and dotted green the 5-mode truncation. Panel (a) shows 
autocovariance functions for two Fourier modes Re(uk(t)). In (b), we show cross correlation functions for the energies |uk(t)|2 and |u4(0)|2 for k = 2, 5. In 
(c), distributions of Re(uk) are shown.

long-wave instability in KS. Consistent with Fig. 1(a), the mean follows the true trajectory up to t ≈ 40, at which point 
they begin to diverge. In contrast, the 5-mode truncation diverges by t ≈ 20. Moreover, even when the confidence interval 
starts to widen, it continues to provide useful bounds for some time. Eventually the ensemble approaches statistical steady 
state, and the ensemble mean converges toward its expected value. Fig. 1(c) compares the energy spectra 〈|uk|2〉: while the 
reduced model correctly predicts the spectrum, the 5-mode truncation produces fluctuations that are too large.

We note that while the noise terms are small in amplitude (see Fig. 4), we could not have constructed the confidence 
intervals in Fig. 1 without them. Moreover, we conducted numerical experiments without the noise terms. The results (data 
not shown) show that the reduced models do considerably worse at all tasks, and at least for some choices of (p, r) the 
solutions converge quickly to 0.
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In Fig. 2, we examine long-time statistics. In (a), we compare the autocovariance functions of selected Fourier modes. 
Unlike the 5-mode truncation, the reduced model is able to reproduce quite complex features in the ACFs. Fig. 2(b) shows 
cross correlation functions for the energy of the kth mode with the energy of the 4th mode, i.e., cov(|un

k |2, |u0
4|2) as a 

function of the time lag n�t; such cross correlation functions can be viewed as a measure of energy transfer between modes. 
The reduced model correctly predicts these 4th moments, showing that the reduced model captures genuinely nonlinear 
effects in KS dynamics. Panel (c) shows the reduced model is able to reproduce marginal distributions, whereas the 5-mode 
truncation produces marginals that are too wide (compare with Fig. 1(c)). We conclude that both in terms of short-time 
forecasting and long-time statistics, the reduced model effectively captures KS dynamics. These findings are consistent 
with [53], suggesting the likelihood-based estimator used in [8,53] and the least squares estimator above are comparable, 
and the NARMAX model in [53] nearly optimal in the least squares sense. Numerical tests show that slightly different 
models (with different time lags p and r) may have similar statistical properties (such as consistency) and comparable 
performance in prediction. This suggests that there may be multiple reduced models fitting the data.

Linear vs. nonlinear regression. Sect. 3.2 emphasizes that choice of loss function should be viewed as part of the model 
reduction procedure. In particular, for our ansatz, the MZ formalism suggests a least squares approach leading to nonlinear 
regression (the nonlinearity arising from the way we parametrize the transfer function H(z) by a rational approximation). 
An alternative is to infer the coefficients by linear regression, by minimizing the one step predictions in Eq. (3.19). Though 
the resulting reduced model Eq. (3.18) is formally equivalent to Eq. (3.14), the coefficients and the statistics of the residuals 
are different. We emphasize that both models are nonlinear and share the same functional form, and differ only in how 
model coefficients are inferred. For both models, the residuals are computed via Eq. (4.3) and a stationary Gaussian process 
fitted using the procedure outlined in Sect. 4.4.

Overall, using linear regression, we found far fewer combinations of (p, r) for which the reduced models is stable. 
Unfortunately, for the range of relatively low order models we tested (0 ≤ p, r ≤ 3), we did not find any combinations of p
and r for which both procedures produced stable models. Thus, we did not conduct a direct comparison between the two. 
The closest pair of parameters we found were p = r = 1 using nonlinear regression, and p = 1, r = 0 using linear regression. 
This means our nonlinear regression example uses a reduced model of the form xn+2 +a0xn+1 = 	(xn+1) ·b1 +	(xn) ·b0 +ηn , 
while our linear regression model has the form xn+2 + a0xn+1 = 	(xn) · b0 + ηn .

Fig. 3 shows the results. Though both models are fairly low order, the nonlinear regression model has performance 
comparable to the higher-order (p = r = 3) model discussed above. In contrast, the linear regression model has significantly 
worse forecasting performance, and was unable to reproduce the auto-correlation or cross correlation functions accurately. 
However, it does reproduce marginal distributions and energy spectra (not shown) reasonably well.

To compare the statistical properties of the reduced models produced by linear and nonlinear regression, Fig. 4 shows 
the power spectra Sxx(θ) and Sξξ (θ) for the relevant variables xn and the residuals ξn , for the linear regression model and 
the two nonlinear regression model, for the k = 3 Fourier mode. (The other modes show similar trends.) As far as these 
power spectra are concerned, the two nonlinear regression models have nearly identical behavior. For nonlinear regression, 
the residuals (ξn) have broader and flatter power spectra than that of (xn), indicating that the effect of the approximate 
Wiener projection here is to capture the relatively slower dynamics. The residual is, however, far from white, suggesting the 
need for more refined noise models than white noise forcing.

In contrast, linear regression produces much larger residuals, with a flat but less broad power spectrum. It appears that 
linear regression could not fit the data nearly as well, but the addition of a suitable noise model was able to correct for 
some of the defects of the reduced model, e.g., marginal distributions and energy spectra. Temporal statistics appear to be 
more delicate, however, and the linear regression model did not faithfully capture the details of autocovariance functions.

Overall, these results suggest that for the KS equation, linear regression results in considerably worse performance than 
nonlinear regression. This is consistent with our expectation (see Sect. 3.2) that linear regression may have worse perfor-
mance because it neglects longer-range correlations in the data. For “static” quantities like energy spectra and marginal 
distributions, it appears that the noise model was able to compensate for this, but unable to generate correct temporal 
statistics.

5.2. Stochastically-forced Burgers equation

Now consider a stochastically-forced viscous Burgers equation

Ut + U Ux = νUxx + ζ (5.4)

with ζ(t, x) white in t and smooth in x, and U (t, x) 2π -periodic in x. More precisely, in Fourier variables,

u̇k = − iλk

2

∑
�

u�uk−� − νλ2
k uk + σk ẇk, (5.5)

where σk = 1 for |k| ≤ 4 and σk = 0 for |k| > 4, ẇk is white noise, and λk = k. In contrast to the KS equation, which is 
deterministic and exhibits self-sustained chaos, the viscous Burgers equation is dissipative: without forcing, all solutions 
converge to the steady state u ≡ 0 as t → ∞. Stationary statistics of u(x, t) thus reflect a balance between the forcing ζ and 
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Fig. 3. Linear vs nonlinear regression. Left: results from nonlinear regression with p = r = 1. Right: results from linear regression with p = 1, r = 0. Note as 
explained in the text, we did not find any orders (p, r) for which both procedures produced useful models.

dissipation through viscosity. We note that the stochastic Burgers equation has the so-called “one force one solution” (1F1S) 
property [57]: for a given realization of ζt, t ≥ 0, all initial conditions lead asymptotically to the same (time dependent) 
solution. Put another way, modulo transients, solutions of Eq. (5.5) are determined by the forcing.

In view of the 1F1S property, a natural question is: given a specific realization of the forcing ζt , can a reduced model 
correctly predict the response of the system? To test this, we compare a fully-resolved, 128-mode truncation of Eq. (5.5)
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Fig. 4. KS power spectra. The left panel shows the spectral power density Sxx(θ) for x = u3, the k = 3 Fourier mode of the KS equation. The right panel 
shows the same power spectrum on a log-log scale to better exhibit the structure near θ = 0. The solid blue curve is the power spectrum of the Fourier 
mode u3 from the full model, the dashed red curve is the power spectrum of the residuals ξ resulting from nonlinear regression with p = r = 1; the dotted 
green curve is the power spectrum of the residual resulting from linear regression with p = 1, r = 0. Modes with k �= 3 behave similarly and are not shown.

with an under-resolved 9-mode truncation and a 9-mode reduced model inferred from data. Throughout, ν = 0.05. (See 
[58] for an alternate view of this problem.)

Data-driven reduced model. To generate data from the full model, we solve Eq. (5.5) using a scheme of the form

un+1
k = Gk(un,�t) + √

�t σk wn
k , (5.6)

where Gk(u, �t) is the result of applying ETDRK4 to the deterministic part of Eq. (5.5), un
k = uk(n�t), un = (un

1, · · · , un
K ), and 

wn
k independent N(0, 1) random variables. Like the standard Euler-Maruyama scheme, Eq. (5.6) has weak order 1, but is 

more stable [59]. We solve the full system with timestep �t = 0.00125 and observe every 8th step, so the reduced model 
has timestep δ = 0.01. Except for minor differences, this has the form of Eq. (3.22).

To account for the forcing, we modify Eq. (3.14) to obtain

xn+1 = yn + ξn+1, (5.7a)

yn + ap−1 yn−1 + · · · + a0 yn−p (5.7b)

= 	n−p+r · br + · · · + 	n−p · b0+ (5.7c)

cq wn+q + · · · + c0 wn. (5.7d)

The wn in the moving average (5.7d) are related to the forcing wn in Eq. (5.6) by wn = (w8n + · · · + w8n+7)/
√

8; this 
correlates the full model and the reduced model during fitting. The independent noise term ξn is inferred from the residuals 
as before, and permits one to quantify the uncertainty in response prediction via ensemble forecasting. As noted in Sect. 3.3, 
random dynamical systems like Eq. (5.5) are encompassed within MZ theory, and Eq. (5.7) can be seen as a special case of 
the Wiener projection. As before, the orders p and r are selected by trial-and-error.

We have also constructed reduced models of the form (3.14), which do not correlate the reduced and full models through 
shared forcing. All else being equal, we found the performance of Eq. (5.7) to be strictly better in our tests than Eq. (3.14)
because more information is retained. We report results obtained using Eq. (5.7) with p = r = 1, leading to a ∼ 50-fold 
reduction in cost.

The exact form of the predictors 	(·) are given in Appendix D. Interested readers are referred to [60] for further inves-
tigation of this and other parametric forms, consistency of estimators, and model selection.

Results. Fig. 5(a) shows sample solutions. The 1F1S property suggests that the low modes in the full, reduced, and the 
9-mode truncation models will all be strongly correlated, as confirmed in the snapshots. However, one also sees that the 
9-mode truncation exhibits significant deviations from the full model, unlike the reduced model. Panels (b) and (c) shows 
this behavior in more details: because of the forcing, the low modes of all 3 models stay close over time, but the 9-mode 
truncation shows relatively large deviations from the full model. As before, Fig. 5(b) shows 90% confidence intervals for the 
reduced model, computed using an ensemble of 100 trajectories. As expected, the forced modes are tightly entrained to 
each other, whereas the 9-mode truncation shows significant deviation in higher modes. Because of the 1F1S property, the 
reduced model can be expected to correctly forecast the response for as long as information about the forcing is available. 
As for the KS equation, the reduced model here also reproduces long-time statistics; see Fig. 5(c) for the energy spectrum 
and Appendix D for other statistics.

Finally, we note that while accurate response forecasting will clearly become more difficult for larger observation inter-
vals, the reduced model can nevertheless capture long-time statistics for much larger observation times. Indeed, we have 
tested the reduced model for much larger observation intervals, up to 0.1 (see Appendix D).
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Fig. 5. Stochastic Burgers solutions. Panel (a) shows results computed using the 128-mode truncation with �t = 0.00125 (left), and snapshots of the full 
model, the 9-mode reduced model (�t = 0.01), and the 9-mode truncation (�t = 0.00125). In (b), we plot two Fourier modes as functions of time, with 
90% confidence intervals for the reduced model. Panel (c) shows the energy spectrum.

Linear vs. nonlinear regression. In contrast to the KS equation, linear and nonlinear regression produced essentially identical 
results for the Burgers equation. In particular, our tests show that linear regression can produce marginal distributions and 
ACFs comparable to the nonlinear regression model, and has nearly identical forecasting skill; see Fig. D.14 in Appendix D.

Fig. 6 compares the spectral power densities Sxx(θ) and Sξξ (θ) for the relevant variables xn and the residuals ξn , for the 
k = 3 Fourier mode. (The other modes are similar.) Unlike the KS equation, here the linear and nonlinear regression give 
essentially identical power spectra of the noise. The residual spectrum is not broader than the spectrum of the Fourier mode 
itself, likely because the Fourier modes of the Burgers equation are subjected to white noise forcing and therefore contain 
much higher frequency content than their KS counterparts. As in the KS example, leaving out the noise terms entirely led 
to much worse results.

In view of the discussion in Sect. 3.2, the remarkable contrast between this and the KS equation may be due to the fact 
that the Burgers equation is being driven by white noise. The 1F1S property implies that the dynamics is largely determined 
by the forcing, and hence long-range temporal correlations play less of a role.
19



K.K. Lin and F. Lu Journal of Computational Physics 424 (2021) 109864
Fig. 6. Burgers power spectra. Left panels show the spectral power density Sxx(θ) for the kth Fourier mode of the Burgers equation. Right panels show 
the same power spectrum on a log-log scale. Solid blue curves are the power spectrum of the Fourier mode uk from the full model, dashed red curves 
that of the residuals ξ from nonlinear regression; and dotted green curves the residual power spectrum from linear regression. The green and red curves 
essentially coincide.

6. Concluding discussion

Many issues surrounding this topic remain incompletely understood. We mention a few here:

– Nonparametric modeling. We have focused on parametric model reduction in this paper. But in principle the observation 
functions 	(x) can be inferred from data using nonparametric methods like delay coordinates, manifold learning, dy-
namic model decomposition, reservoir computing, and other machine learning techniques [61–67]. Eq. (3.6) still applies 
in these situations, and the Wiener projection formulation complements and extends existing strategies for data-driven 
modeling and model reduction by providing a systematic guide to incorporating memory and noise effects, in situations 
without sharp scale separation. For example, one may infer 	 by a combination of delayed coordinates and manifold 
learning, or artificial neural network techniques.

– Other rational approximations of H(z). The simple rational approximation H(z) = B(z)/A(z) is used here out of expedi-
ence. Experience has shown that other rational approximations, e.g., those based on continued fractions, can sometimes 
yield effective approximations with relatively few undetermined parameters [6]. These will be investigated in future 
work.

– Structure-preserving reduced models. Most physical systems of interest are characterized by exact or approximate conser-
vation laws and symmetries, and it is important for reduced models to preserve these fundamental physical constraints. 
Structure-preserving model reduction is an active area of study, and the framework described in this paper may provide 
a new perspective on this problem.

– Numerical stability. In a data-driven approach, one often finds that the estimated reduced model is numerically unstable. 
Heuristically, this is because (i) reduced models often coarse-grain in both time and space, and the relatively large 
time steps impose more stringent stability requirements; (ii) most loss functions used in data-driven model reduction 
reflect the accuracy of the approximation, and one runs the risk of overfitting data. Indeed, our results have shown 
that the most accurate reduced models (i.e., those with the smallest residuals) are not always the best reduced model. 
A general understanding of numerical stability in these models is currently lacking. Because our nonlinear regression 
method always produces linearly stable models, understanding numerical stability will likely require tackling the strong 
nonlinearities inherent in these models.

– Quantification of the accuracy of a reduced model. Data-driven approaches have led to many model reduction strategies 
that can successfully reproduce key dynamical features such as energy spectrum and correlations. The development of 
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systematic approaches to quantify, analyze, and compare reduced models to full models remain incomplete. It is our 
hope that the formalism developed in this paper will provide a new perspective on this fundamental problem.

– Noise modeling. For both our examples, the residuals have small amplitude, and we have seen that additive noise models 
work relatively well. We do not know if this approach will continue to be effective when the residuals have large 
amplitude, as occurs in, e.g., molecular dynamics at finite temperatures.

– Relationship to other data-driven modeling approaches? In recent years, a variety of data-driven modeling and model 
reduction techniques have been proposed, applicable in different dynamical regimes. These include delay coordinate 
embedding [68,65,69], manifold learning and kernel regression [70,63], dynamic mode decomposition (DMD) [71,72,14], 
and many others. The MZ framework should not be viewed as an alternative to these methods. Rather, it is comple-
mentary in the sense that it provides a general scaffold into which different model reduction techniques can fit. For 
example, for problems with low-dimensional attractors in high-dimensional phase spaces, delayed coordinates and ex-
tensions like DMD are natural. But when the underlying assumptions (e.g., fast convergence to the low-dimensional 
attractor, deterministic dynamics) are only satisfied approximately, the MZ formalism may be useful for suggesting 
corrections.

To conclude, we have shown the Wiener projection provides a framework for data-driven modeling that is grounded 
in dynamical systems theory. As such, we view it as a step towards bridging the gap between nonlinear dynamics theory 
and data-driven model reduction. Within this framework, we give a heuristic derivation of a version of the NARMAX model 
widely used in time series modeling and analysis, providing an interpretation of NARMAX in terms of an underlying dy-
namical system and evidence that it may be nearly optimal in the sense of least squares. In addition to giving a dynamical 
basis for NARMAX, this framework may provide a starting point for systematic data-driven model reduction, Using the KS 
and stochastic Burgers equations, we have demonstrated the flexibility and effectiveness of this view of model reduction for 
deterministic chaotic and random dynamics.
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Appendix A. The dual equation and Mori-Zwanzig closure

In this section, we give an alternate derivation of the MZ equation (2.2) that makes use of a dual equation describing the 
evolution of conditional probability distributions. Though longer, it gives some additional insights into the meaning of the 
MZ equation.

As before, let F be a dynamical system with state space X. Suppose an initial condition X0 is drawn from the distribution 
ρ0. Let ρn denote the distribution of Xn; then ρn+1 = Lρn , where L is the transfer operator, defined by∫

ϕ ◦ F dρ =
∫

ϕ d(Lρ) (A.1)

for suitable test functions ϕ . The above is equivalent to∫
(Mϕ) dρ =

∫
ϕ d(Lρ), (A.2)

i.e., the operator L is the adjoint of the Koopman operator M , where the adjoint of an operator T acting on functions is the 
operator T † acting on distributions defined by 

∫
(Tϕ) dρ = ∫

ϕ d(T †ρ). With this, and with P and Q as before, we have

Q †ρn+1 = Q †Lρn

= Q †L(P † + Q †)ρn

= Q †L Q †ρn + Q †L P †ρn,
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using P † + Q † = I . Solving the recurrence for Q †ρn gives

Q †ρn = (Q †L)n Q †ρ0 +
n−1∑
k=0

(Q †L)n−k P †ρk . (A.3)

From this it follows that

ρn+1 = Lρn

= L P †ρn + L Q †ρn

= L P †ρn + L(Q †L)n Q †ρ0 + L
n−1∑
k=0

(Q †L)n−k P †ρk ;

in the last line we just substituted Eq. (A.3).
The above is equivalent to the operator equation

Ln+1 = L P †Ln + L(Q †L)n Q † + L
n−1∑
k=0

(Q †L)n−k P †Lk . (A.4)

Taking adjoints, we get the Dyson formula

Mn+1 = Mn P M + Q (M Q )n M +
n−1∑
k=0

Mk P (M Q )n−k M. (A.5)

From this, the MZ equation follows as before.
Suppose now P is conditional expectation with respect to μ. Observe that for an observable ϕ and a probability distri-

bution ρ , we have∫
Pϕ dρ =

∫∫ [∫
ϕ(x, y) μY |X (dy|x)

]
ρ(dx,dy′)

=
∫ [∫

ϕ(x, y) μY |X (dy|x)
]

ρX (dx)

=
∫

ϕ(x, y)

∫
μY |X (dy|x) ρX (dx)

=
∫

ϕ d(P †ρ).

So the dual P † to the conditional expectation P is

(P †ρ)(dx,dy) = ρX (dx) · μY |X (dy|x) . (A.6)

That is, for a density ρ , P †ρ is the product of the X-marginal of ρ and the conditional density μY |X . The operator P †

preserves the X-marginals of densities, and P †μ = μ. If one were to construct reduced models by keeping only the Markov 
term in the MZ equation, this corresponds to the closure assumption that the unresolved modes have statistics given by the 
stationary distribution μ conditioned on the resolved modes. This is the discrete-time analog of the averaging principles for 
ODEs (see, e.g., [73]).

Appendix B. Brief summary of z-transform and Wiener filters

For the convenience of readers, this Appendix provides a brief non-technical summary of some basic facts about z-
transforms and Wiener filtering. See, e.g., [74,40,75,76] for more details.

z-transforms and linear filtering. We first consider (real or complex, scalar or vector) bi-infinite sequences · · · , x−1, x0, x1, · · ·
that are causal, i.e., xn = 0 for n < 0. For simplicity, we assume (xn) ∈ �1 (though much of what we say below holds as long 
as the xn decay sufficiently fast as n → ∞). For a causal sequence, its z-transform is the formal series

X(z) =
∑
n≥0

xnz−n. (B.1)

In the above expression, z should be viewed as a complex variable, though the series typically does not converge for all 
z ∈C. The �1 assumption (which covers many examples in applications) means the domain of convergence of X(z) includes 
the unit circle and X(e−iθ ) is a Fourier series with xn as coefficients. In this case, the z-transform is invertible by
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xn = 1

2π

2π∫
0

e−inθ X(e−iθ ) dθ. (B.2)

More generally, the z transform can be inverted by an appropriate application of the Cauchy integral formula.
The z-transform is the analog of the Laplace transform for difference equations. Two key properties include:

(i) Shifts: if yn = xn+1 for n ≥ 0, then Y (z) = z(X(z) − x0).
(ii) Convolution: if wn = (x � y)n = ∑

k≥0 xk yn−k , then W (z) = X(z) · Y (z).

In signal processing and time series analysis, the z-transform is useful for representing the action of “linear filters.” That 
is, suppose we have a signal (xn). A linear filter is a linear transformation mapping (xn) to (yn), with

yn = (x � h)n =
∑
k≥0

xk · hn−k. (B.3)

The sequence (hn), which defines the filter, is known as its impulse response, so called because hn is the response of the 
filter when (xn) is the unit impulse, i.e., xn = δn0, δmn being the Kronecker delta function. By the convolution property, we 
then have Y (z) = H(z)X(z). H(z) is the “transfer function” of the linear filter.

One of the ways in which the z-transform is useful is that the analytic properties of the transfer function encode the 
asymptotic behavior of the impulse response. For example, if the transfer function H(z) of a scalar filter were meromorphic 
and all its poles lie strictly inside the unit disc, then Eq. (B.2) tells us hn is causal and decays exponentially as n →
∞. (If we only know that the restriction of H to the unit circle is continuous, then hn → 0 is implied by the Riemann-
Lebesgue lemma.) In the reverse direction, if (hn) ∈ �1 (as we assume), then H(z) cannot have any poles outside the unit 
disc.

An application to NARMAX. In Sect. 3.2, we asserted the equivalence of Eqs. (3.14) and (3.18) modulo transients. Here we 
show a derivation using z-transforms; an alternative is to use the substitution yn = xn+1 − ξn+1 in Eq. (3.18). One of the 
advantages of the z-transform method is that it provides an operational calculus for keeping track of indices systematically.

First, take z-transforms of Eq. (3.14), we get

z(X(z) − x0) = Y (z) + z(
(z) − ξ0) (B.4a)

A(z)Y (z) + p0(z) = 	(z) · B(z) + q0(z) (B.4b)

where p0(z) and q0(z) are polynomials whose coefficients are functions of the initial conditions x0, · · · , xp and 
	(x0), · · · , 	(xq), with deg(p) ≤ deg(A) and deg(q) ≤ deg(B), and p0 ≡ q0 ≡ 0 if the x0 = · · · = xp = 	0 = · · · = 	q = 0. 
Substituting Eq. (B.4b) into (B.4a) and simplifying, we get

z A(z)(X(z) − x0) + p0(z) = 	(z) · B(z) + q0(z) + z A(z)(
(z) − ξ0). (B.5)

For comparison, if we transform Eq. (3.18), we get

z A(z)X(z) + p1(z) = 	(z) · B(z) + q1(z) + z A(z)
(z). (B.6)

Comparing Eqs. (B.5) and (B.6), we see they are equivalent modulo terms involving initial conditions. If all the zeros of A(z)
lie inside the unit circle, then transients will decay as n → ∞, so modulo transients Eqs. (B.5) and (B.6) are equivalent. In 
particular, the recursions are exactly equivalent for homogeneous initial conditions.

The above argument relies on the z-transform. Because the recursions are driven by the ξn , its validity hinges on what we 
assume about ξn: if the ξn were, e.g., white noise, then the z-transforms are not well-defined, but if the ξn decay sufficiently 
fast as n → ∞, then the z-transforms are valid. Supposing now that there is a sequence ξn such that Eqs. (B.5) and (B.6) are 
not equivalent for homogeneous initial conditions x0 = · · · = xp = 	0 = · · · = 	q = 0. Then there is a least N > 0 for which 
they would disagree. But then if we set ξ ′

n = ξn for n ≤ N + p and ξ ′
n = 0 for n > N + p, then (because the recursion has 

order p) the two recursions would differ when driven by ξ ′
n .

Correlation functions and power spectra. The preceding discussion of the z-transform only makes sense if the sequences in-
volved decay sufficiently fast as n → ∞. In our context, we are interested in convolving such a sequence (hn) with stationary 
stochastic processes. The formal series (B.1) does not make sense.

A standard approach is based on correlation functions. Suppose (Xk) and Yk are zero-mean stationary stochastic pro-
cesses taking values in Rd . We define the (matrix-valued) correlation function to be

Cxy(k) = E
(

Xk · Y ∗
0

)
(B.7)

where “∗” denotes the conjugate transpose. The corresponding power spectrum is
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Sxy(z) =
∑

k

z−kCxy(k). (B.8)

Note this generalizes the notion of spectrum introduced earlier, and we are abusing notation slightly. The spectrum intro-
duced earlier is Sxy(e−iθ ). We record some useful properties:

(i) Cxx(0) is hermitian positive-semidefinite.
(ii) Cxy(k)∗ = C yx(−k), in particular Cxx(k)∗ = Cxx(−k).

(iii) Sxy(e−iθ )∗ = S yx(e−iθ ).
(iv) Sxx(e−iθ )∗ = Sxx(e−iθ ), i.e., the power spectrum is hermitian for all θ .
(v) If Y = h � X , then

C yx(n) =
∑

k

hn−k · Cxx(k), (B.9)

or C yx = h � Cxx .
(vi) Taking z-transforms yields

S yx(z) = H(z) · Sxx(z). (B.10)

Note the above identities are valid for both scalar and matrix quantities.
(vii) Similarly,

Cxy(n) =
∑

k

Cxx(n + k) · h∗
k . (B.11)

The z-transform is now

Sxy(z) = Sxx(z) · H∗(1/z) (B.12)

where H∗ is the z-transform of the sequence h∗
n .

(viii) Putting these relations together yields C yy = h � Cxx � h∗ , or equivalently

S yy(z) = H(z) · Sxx(z) · H∗(1/z). (B.13)

On the unit circle, this simplifies to

S yy(e−iθ ) = H(e−iθ ) · Sxx(e−iθ ) · H∗(eiθ ). (B.14)

In the scalar case, this reduces to S yy(e−iθ ) = |H(e−iθ )|2 Sxx(e−iθ ).

These properties also form the basis for the random Fourier representation of stationary stochastic processes in Eq. (4.13).

Wiener filtering. We now record some basic results of Wiener filter theory for interested readers. This material is not used 
directly in the paper.

The Wiener filter is the linear filter (hn) that minimizes the MSE

E
∣∣∣Xn −

∑
k≥0

	n−k · h−k

∣∣∣2
. (B.15)

Equivalently, if we write

Xn =
∑

k

hn−k · 	k + ξn (B.16)

this amounts of choosing (hn) to minimize the residuals E|ξn|2. One can show that the power spectrum satisfies

Sξξ = Sxx − Sxψ · S−1
ψψ · Sψx︸ ︷︷ ︸

(I)

+ (H · Sψψ − Sxψ) · S−1
ψψ · (Sψψ · H∗ − Sψx)︸ ︷︷ ︸
(II)

(B.17)

where S ·(·) denotes power spectra as before, and H(z) is the z-transform of (hn). Observe Sξξ (e−iθ ) ≥ 0 for all H . If we set

H(e−iθ ) = Sxψ(e−iθ ) · S−1
ψψ(e−iθ ) , (B.18)

then (II) vanishes. This means (I) is ≥ 0. Since (II) is obviously ≥ 0 as well, we see T r(Sξξ ) is minimized by Eq. (B.18).
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Unfortunately, the linear filter (hn) defined by Eq. (B.18) may not be causal, i.e., hn may be nonzero for n < 0. Such a 
filter would use future values of 	m with m > n to predict Xn . How, then, do we find a causal filter, i.e., one with hn = 0 for 
n < 0? Let us first look at the special case where Sψψ(z) ≡ Id×d , i.e., (	n) is “white.” Then the functional to be minimized is

T r
(
(H − Sxψ) · (H∗ − Sψx)

)
. (B.19)

By Plancherel’s Theorem, the optimal causal solution is given by H = [Sxψ ]+ , where

[S]+(e−iθ ) = 1

2π

∞∑
n=0

2π∫
0

ein(θ−θ ′) S(e−iθ ′
) dθ ′. (B.20)

Summing over n ≥ 0 instead of n ∈ Z sets the impulse response sn = 0 for n < 0, thus making it causal. The [·]+ operator 
transforms a given function to the time domain, zero out all entries for n < 0, then transform back to frequency domain.

Now, in general 	n will not be white. But, since Sψψ(e−iθ ) ≥ 0, there exist C such that C(e−iθ ) · C∗(eiθ ) = Sψψ(e−iθ ). So 
if we take W = C−1 (as a function on S1), then w � 	 will be white. A remarkable fact is that under very broad conditions, 
there is a function W (z) such that all its poles and zeros lie inside the unit circle, and W (e−iθ ) = C(e−iθ ). Such a W defines 
a causal stable linear filter (wn) such that w � 	 has power spectrum

W (e−iθ ) · Sψψ(e−iθ ) · W (e−iθ )∗ ≡ Id×d, (B.21)

i.e., w � 	 is white. (The filter (wn) is known as a whitening filter.) Using the whitening filter, one can check that

H(z) = [Sxψ(z) · W ∗(1/z)]+ · W (z) (B.22)

is indeed the causal Wiener filter.

Appendix C. Kuramoto-Sivashinsky equation

Nonlinear terms in the NARMAX model

The Kuramoto-Sivashinsky example in Sect. 5 uses the reduced model from [53]. For the convenience of readers, the full 
ansatz is reproduced here:

un+1
k = un

k + R�t
k (un) �t + zn

k �t, (C.1a)

zn+1
k = �n

k + ξn+1
k , (C.1b)

�n
k =

p∑
j=0

ak, j z
n− j
k +

r∑
j=0

bk, ju
n− j
k + ck,(K+1)R�t

k (un)

+ i
K∑

j=1

ck, j ũ
n
j+K ũn

j+K−k +
q∑

j=0

dk, jξ
n− j
k , (C.1c)

where

ũn
j =

⎧⎨
⎩

un
j , 1 ≤ j ≤ K

i
∑K

�= j−K un
�un

j−�
, K < j ≤ 2K .

(C.1d)

The nonlinear terms in Eqs. (C.1c) and (C.1d) are suggested by inertial manifold theory. See [53] for details.
We compare the above ansatz to the model used in this study, of the form (3.14) with predictors in (5.3). It is straight-

forward to show that the ansatz in Eq. (C.1) is equivalent to a model of the form in Eq. (3.18):

un+p′+1 + ap′−1un+p′ + · · · + a0un+1 = 	′
n+q′ · bq′ + · · · + 	n · b0 + ξ ′

n+1, (C.2)

for some choice of orders p′, q′ , coefficients ai, bi , functions {	′
n} and noise ξ ′

n . In addition to the different approaches 
estimating the parameters (a, b), the models are different in the following aspect:

(i) Here we model the noise by a Gaussian process using power spectrum from the residual ̃ξn , whereas Eq. (C.1) models 
the noise by a moving average process.

(ii) as suggested by the Wiener projection formalism, the model (3.14) in this study contains time-delayed copies of all 
nonlinear terms, whereas Eq. (C.1) does not.
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Fig. C.7. Comparison of finite-time forecasts and marginal distributions. In all panels, solid blue line is the full model (108-mode truncation), dashed red 
line is the 5-mode reduced model, and dotted green line the 5-mode truncation. Left: trajectories starting from the same initial conditions. For the reduced 
model, we show the 5th percentile, mean, and 95th percentile, computed with an ensemble of size 100. The truncated model was terminated at t = 40 to 
reduce clutter. Right: marginal densities.
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Fig. C.8. Comparison of autocovariance functions (ACFs) and energy cross correlation functions (CCFs). In all panels, solid blue line is the full model (108-
mode truncation), dashed red line is the 5-mode reduced model, and dotted green line the 5-mode truncation. Left: Autocovariance functions for Re(uk(t))
for k = 1, · · · , 5. Right: Cross correlations between |u4(t)|2 and |uk(t)|2 for k = 1, · · · , 5.
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Detailed numerical results

Figs. C.7 and C.8 are full versions of the numerical results shown in Sect. 5.1.
To further quantify finite-time forecasts as a function of the “lead time” (i.e., time since initial observation), we intro-

duce two standard measures of forecasting “skill,” the root mean squared error and the anomaly correlation. Both are 
based on ensemble forecasts in the following way: let v(tn) denote the time series data for the full model, and take 
N0 short pieces, i.e., {(v(tn),n = ni,ni + 1, . . . ,ni + T )}N0

i=1 with ni+1 = ni + Tlag/�t , where T = Tlag/�t is the length of 
each piece and Tlag is the time gap between two adjacent pieces. For each short piece (v(tn),n = ni, . . . ,ni + T ), we 
generate Nens trajectories of length T from the reduced model, starting all ensemble members from the same initial seg-
ment 

(
v(tni ), v(tni+1), . . . , v(tni+m)

)
, where m = 2p + 1, and denote the sample trajectories by 

(
un(i, j),n = 1, . . . , T

)
for 

i = 1, . . . , N0 and j = 1, . . . , Nens .
Again, we do not introduce artificial perturbations into the initial conditions, because the exact initial conditions are 

known, and by initializing from data, we preserve the memory of the system so as to generate better ensemble trajectories.
The root mean squared error is

RMSE(τn) :=
⎛
⎝ 1

N0

N0∑
i=1

∣∣Re v(tni+n) − Re un(i)
∣∣2

⎞
⎠1/2

, (C.3)

where τn = n�t , un(i) = 1
Nens

∑Nens
j=1 un(i, j), and the anomaly correlation (see, e.g., [77]) is

ANCR(τn) := 1

N0

N0∑
i=1

av,i(n) · au,i(n)√
|av,i(n)|2 ∣∣au,i(n)

∣∣2
, (C.4)

where av,i(n) = Re v(tni+n) − Re 〈v〉 and au,i(n) = Re un(i) − Re 〈v〉 are the anomalies in data and the ensemble mean. Here 
a · b =∑K

k=1 akbk , |a|2 = a · a, and 〈v〉 is the time average of the long trajectory of v . Both statistics measure the accuracy 
of the mean ensemble prediction: the RMSE measures, in an average sense, the difference between the mean ensemble 
trajectory, and the ANCR shows the average correlation between the mean ensemble trajectory and the true data trajectory. 
RMSE = 0 and ANCR = 1 would correspond to a perfect prediction, and small RMSEs and large (close to 1) ANCRs are 
desired.

For our reduced model, we computed the RMSE and ANCR using ensembles of Nens = 100 trajectories with independent 
initial conditions. Fig. C.9 (left) shows the RMSE and ANCR for a range of lead times. As expected, the RMSE increases with 
lead time, and consistent with Fig. 1(a), it is relatively small compared to its apparent asymptotic value (about 0.6) for lead 
times < 50. The ANCR in Fig. C.9 (right) corroborates this. The two figures are comparable to Fig. 5 of [53] and show very 
similar trends.

Role of the noise terms ξn. We experimented with running the reduced model with ξn ≡ 0, i.e., without any noise term. This 
does not appreciably change the ACF or marginal distributions, nor the forecasting skill of the reduced model. However, the 
kind of ensemble prediction and uncertainty quantification illustrated in Fig. C.7 cannot be carried out without noise terms 
calibrated to the reduced model.

Fig. C.9. Forecasting skill as function of lead time of the reduced model for the KS equation. Left: root mean squared error (RMSE). Right: anomaly correlation 
(ANCR). See text for details.
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Fig. D.10. Response forecasting for the stochastic Burgers equation. For k = 1, · · · , 9, we plot Re(uk(t)) as functions of t . In all panels, solid blue line is the 
full model (128-mode truncation), dashed red line is the 9-mode reduced model, and dotted green line the 9-mode Galerkin truncation. Initial transients 
(t < 8) are not shown.

Appendix D. Stochastic Burgers equation

The nonlinear terms {	n− j} in Eq. (5.7c) are defined by

	a
n− j = un− j , 	b

n− j = R�t(un− j) , and 	c
n− j,k =

∑
|k−l|≤K ,K<|l|≤2K

or |l|≤K ,K<|k−l|≤2K

ũn−1
l ũn− j

k−l for k = 1, · · · , K ,

where the terms {̃u} are defined as

ũn− j
k =

⎧⎪⎨
⎪⎩

un− j
k , 1 ≤ k ≤ K ;

iλk
2 e−νλ2

k jδ ∑
|l|≤K ,

|k−l|≤K
un− j

k−l un− j
l , K < k ≤ 2K .

(D.1)

These terms resemble those in Eq. (C.1d) as they are also introduced to represent the high modes by the low modes. But 
there is a major difference: they represent the high modes as a functional of the history of the low modes, rather than a 
function of the current state of the low modes. This is due to the lack of an inertial manifold for the Burgers equation, unlike 
the KSE. These terms are derived from an Riemann sum approximation of the integral equation for the high modes, with 
suitable linear parametrization of the quadratic interaction. A detailed derivation of the ansatz is presented in a forthcoming 
paper.

Figs. D.10–D.13 show numerical results for the stochastic Burgers equation.
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Fig. D.11. Marginal densities for the stochastic Burgers equation. We plot estimated densities for Re(uk) for k = 1, · · · , 9. In all panels, solid blue line is the 
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Fig. D.12. Autocovariance functions for the stochastic Burgers equation. We plot autocovariance functions for Re(uk) for k = 1, · · · , 9. In all panels, solid 
blue line is the full model (128-mode truncation), dashed red line is the 9-mode reduced model, and dotted green line the 9-mode Galerkin truncation.

Fig. D.13. Energy cross-correlation functions for the stochastic Burgers equation. We plot cross correlation functions for |u2|2 and |uk|2 for k = 1, · · · , 9. 
In all panels, solid blue line is the full model (128-mode truncation), dashed red line is the 9-mode reduced model, and dotted green line the 9-mode 
Galerkin truncation.
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Fig. D.14. The results using a linear regression with p = 1, r = 1 as in Eq. (3.19). They are almost identical as those in Fig. 5 from a nonlinear regression 
using the model in Eq. (3.14) with p = 1, r = 1.
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