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Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–
Newton with Approximated Tensors (GNAT) method have shown promise, as they 
have generated stable, accurate solutions for large-scale turbulent, compressible flow 
problems where standard Galerkin techniques have failed. However, there has been limited 
comparative analysis of the two approaches. This is due in part to difficulties arising from 
the fact that Galerkin techniques perform optimal projection associated with residual 
minimization at the time-continuous level, while LSPG techniques do so at the time-
discrete level.
This work provides a detailed theoretical and computational comparison of the two 
techniques for two common classes of time integrators: linear multistep schemes and 
Runge–Kutta schemes. We present a number of new findings, including conditions under 
which the LSPG ROM has a time-continuous representation, conditions under which the 
two techniques are equivalent, and time-discrete error bounds for the two approaches. 
Perhaps most surprisingly, we demonstrate both theoretically and computationally that 
decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, 
the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical 
experiments carried out on a turbulent compressible-flow problem with over one million 
unknowns, we show that increasing the time step to an intermediate value decreases 
both the error and the simulation time of the LSPG reduced-order model by an order of 
magnitude.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

While modeling and simulation of parameterized systems has become an essential tool in many industries, the com-
putational cost of executing high-fidelity simulations is infeasibly high for many time-critical applications. For example, 
real-time scenarios (e.g., model predictive control) require simulations to execute in seconds or minutes, while many-query 
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scenarios (e.g., statistical inversion) can require thousands of simulations corresponding to different parameter instances of 
the system.

Reduced-order models (ROMs) have been developed to mitigate this computational bottleneck. First, they execute an 
offline stage during which computationally expensive training tasks (e.g., evaluating the high-fidelity model at several points 
in the parameter space) compute a representative low-dimensional ‘trial’ basis for the system state. Then, during the in-
expensive online stage, these methods quickly compute approximate solutions for arbitrary points in the parameter space 
via projection: they compute solutions in the span of the trial basis while enforcing the high-fidelity-model residual to be 
orthogonal to a low-dimensional ‘test’ basis. They also introduce other approximations in the presence of general nonlinear-
ities or non-affine parameter dependence. See Ref. [13] and references within for a survey of current methods.

By far the most popular model-reduction technique for nonlinear ordinary differential equations (ODEs) is Galerkin pro-
jection [53], wherein the test basis is set to be equal to the trial basis, which is often computed via proper orthogonal 
decomposition (POD) [35]. Galerkin projection can be considered continuous optimal, as the Galerkin-ROM velocity mini-
mizes the ODE (time-continuous) residual in the �2-norm. In addition, for specialized dynamical systems (e.g., Lagrangian 
dynamical systems), performing Galerkin projection is necessary to preserve problem structure [39,22,23]. However, theoret-
ical analyses—in the form of time-continuous error bounds [45] and stability analysis [31]—as well as numerical experiments 
have shown that Galerkin projection can lead to significant problems when applied to general nonlinear ODEs: instability 
[46], inaccurate long-time responses [52,43], and no guarantee of a priori convergence (i.e., adding basis vectors can degrade 
the solution) [47, Section 5]. In turbulent fluid flows, some of this poor performance can be attributed to the trial basis 
‘filtering out’ small-scale modes essential for energy dissipation.

To address these shortcomings, alternative projection techniques have been developed, particularly in fluid dynamics. 
These include stabilizing inner products [47,11,38]; introducing dissipation via closure models [8,52,14,57,50] or numerical 
dissipation [36]; performing nonlinear Galerkin projection based on approximate inertial manifolds [41,51,37]; including a 
pressure-term representation [43,33]; modifying the POD basis by including many modes (such that dissipative modes are 
captured), changing the norm [36], enabling adaptivity [14], or including basis functions that resolve a range of scales [9]
or respect the attractor’s power balance [10]; and performing Petrov–Galerkin projection [28].

Alternatively, a promising new model-reduction methodology eschews Galerkin projection in favor of performing projec-
tion at the fully discrete level, i.e., after the ODE has been discretized in time [19]. This discrete-optimal method—known as 
least-squares Petrov–Galerkin (LSPG) projection—computes the solution that minimizes the �2-norm of the (time-discrete) 
residual arising at each time step; this ensures that adding basis vectors yields a monotonic decrease in the least-squares 
objective function. When equipped with gappy POD [27] (a least-squares generalization of—and precursor to—the discrete 
empirical interpolation method [24]) to approximate the discrete residual as a complexity-reduction mechanism, this ap-
proach is known as the Gauss–Newton with Approximated Tensors (GNAT) method [21]. While LSPG projection does not 
necessarily guarantee a priori accuracy and stability for turbulent, compressible flows, it has been computationally demon-
strated to generate accurate and stable responses for such problems on which Galerkin projection yielded unstable responses 
[19–21].

In spite of its promise, theoretical analysis has been limited to developing consistency conditions for snapshot collection 
[19,21] and discrete-time error bounds for simple time integrators [21,3]. In particular, major outstanding questions include: 
(1) What are time-continuous and time-discrete representations of the Galerkin and LSPG ROMs for broad classes of time 
integrators? (2) Are there conditions under which the two techniques are equivalent? (3) What discrete-time error bounds 
are available for the two techniques for broad classes time integrators? Related to the third issue is how parameters (e.g., 
time step or basis dimension) for the LSPG ROM should be chosen to optimize performance. This work aims to fill this gap 
by performing a number of detailed theoretical and computational studies that compare Galerkin and LSPG ROMs for the 
two most important classes of time integrators: linear multistep methods and Runge–Kutta schemes. We summarize the 
most important theoretical results (which map to the three questions above) as follows:

1. Continuous and discrete representations
• Galerkin projection and time discretization are commutative (Theorem 3.4).
• LSPG ROMs can be derived for Runge–Kutta schemes (Section 4.1).
• The LSPG ROM has a time-continuous (i.e., ODE) representation under certain conditions (Section 4.2, Fig. 1). This 

ODE depends on the time step �t .
2. Equivalence conditions

• Galerkin and LSPG ROMs are equivalent for explicit time integrators (Corollaries 5.1 and 5.2).
• Galerkin and LSPG ROMs are equivalent in the limit of �t → 0 for implicit time integrators (Theorem 5.3).
• Galerkin ROMs are discrete optimal for symmetric-positive-definite residual Jacobians (Theorems 5.4–5.6).

3. Error analysis
• We provide local and global a posteriori and a priori error bounds for both Galerkin and LSPG ROMs for linear multistep 

schemes (Section 6.1).
• For backward differentiation formulas, we show that the LSPG ROM can yield a lower local a posteriori error bound 

than the Galerkin ROM (Corollary 6.4) because it solves a time-global optimization problem (over a time window) 
rather than a time-local optimization problem (Remark 6.9).
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Fig. 1. Relationship between Galerkin and discrete-optimal ROMs at the time-continuous (ODE) and time-discrete (O�E) levels. Bolded outlines imply the 
ROM associates with a minimum-residual solution at that time-discretization level. Dashed lines imply the relationships are valid under certain conditions 
(see Theorems 4.2 and 4.3).

• For the backward Euler time integrator, we show that an intermediate time step should yield the lowest error bound 
(Corollary 6.17 and Remark 6.18).

• For the backward Euler time integrator, we show that a larger basis size leads to a smaller optimal time step for the 
LSPG ROM (Corollary 6.17).

• We provide global a posteriori and a priori error bounds for both Galerkin and LSPG ROMs for Runge–Kutta schemes 
(Section 6.3).

Fig. 1 summarizes time-continuous and time-discrete representations of the two techniques.
In addition to the above theoretical results, we present numerical results for a large-scale compressible fluid-dynamics 

problem with turbulence modeling characterized by over one million degrees of freedom. These results illustrate the prac-
tical significance of the above theoretical results. Critically, we show that employing an intermediate time step for the LSPG 
ROM can decrease both the error and the simulation time by an order of magnitude, which is a highly non-intuitive result 
that is of immense practical significance.

The remainder of the paper is organized as follows. Section 2 formulates the full-order model, including its representa-
tion at the time-continuous and time-discrete levels. Section 3 presents the Galerkin ROM at the continuous and discrete 
levels, and Section 4 does so for the LSPG ROM. In particular, we provide conditions under which the LSPG ROM has a 
time-continuous representation. Section 5 provides conditions under which the Galerkin and LSPG ROMs are equivalent; 
in particular, equivalence holds for explicit integrators (Section 5.1), in the limit of the time step going to zero for im-
plicit integrators (Section 5.2), and for symmetric-positive-definite residual Jacobians (Section 5.3). Section 6 provides error 
analysis for Galerkin and LSPG ROMs for linear multistep schemes (Section 6.1), Runge–Kutta schemes (Section 6.3), and a 
detailed analysis in the case of backward Euler (Section 6.2). Section 7 provides detailed numerical examples that illustrate 
the practical importance of the analysis. Finally, Section 8 provides conclusions.

In the remainder of this paper, matrices are denoted by capitalized bold letters, vectors by lowercase bold letters, scalars 
by unbolded letters. The columns of a matrix A ∈ R

m×n are denoted by ai ∈ R
m , i ∈ N(n) with N(a) := {1, . . . , a} such that 

A ≡ [a1 · · · an]. We also define N0(a) := {0, . . . , a}. The scalar-valued matrix elements are denoted by aij ∈ R such that 
a j ≡ [a1 j · · · amj

]T , j ∈N(n). A superscript denotes the value of a variable at that time instance, e.g., xn is the value of x at 
time n�t , where �t is the time step.

2. Full-order model

We begin by formulating both the time-continuous (ODE) and time-discrete (O�E) representations of the full-order 
model (FOM).

2.1. Continuous representation

In this work, we consider the full-order model (FOM) to be an initial value problem characterized by a system of non-
linear ODEs

dx

dt
= f (x, t), x(0) = x0, (2.1)

where x : [0, T ] → R
N denotes the (time-dependent) state, x0 ∈ R

N denotes the initial condition, and f : RN × [0, T ] → R
N

with 
(
ξ , τ
) �→ f

(
ξ , τ
)
. This ODE can arise, for example, from applying spatial discretization (e.g., finite element, finite 

volume, or finite difference) to a partial differential equation with time dependence. We note that most model-reduction 
techniques are applied to parameterized systems wherein the velocity f is also parameter dependent. However, we limit 
our presentation to unparameterized systems for notational simplicity, as we are interested comparing Galerkin and LSPG 
ROMs for a given instance of the ODE.
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2.2. Discrete representation

A time-discretization method is required to solve Eq. (2.1) numerically. We now characterize the full-order-model O�E, 
which is the time-discrete representation of the model, for two classes of time integrators: linear multistep schemes and 
Runge–Kutta schemes.

2.2.1. Linear multistep schemes
A linear k-step method applied to numerically solve Eq. (2.1) can be expressed as

k∑
j=0

α jx
n− j = �t

k∑
j=0

β j f
(

xn− j, tn− j
)

, (2.2)

where �t is the time step, the coefficients α j and β j define a specific linear multistep scheme, α0 �= 0, and 
k∑

j=0
α j = 0 is 

necessary for consistency. In this case, the O�E is characterized by the following system of algebraic equations to be solved 
at each time instance n ∈ N(T /�t):

rn (wn)= 0, (2.3)

where wn ∈R
N is the unknown variable and rn : RN →R

N denotes the linear multistep residual defined as

rn (w) := α0 w − �tβ0 f (w, tn) +
k∑

j=1

α jx
n− j − �t

k∑
j=1

β j f
(

xn− j, tn− j
)

. (2.4)

Then, the state can be updated explicitly as

xn = wn.

Hence, the unknown is equal to the state. These methods are implicit if β0 �= 0.

2.2.2. Runge–Kutta schemes
For an s-stage Runge–Kutta scheme, the O�E is characterized by the following system of algebraic equations to be solved 

at each time step:

rn
i

(
wn

1, . . . , wn
s

)= 0, i ∈N(s). (2.5)

Here, the Runge–Kutta residual is defined as

rn
i (w1, . . . , w s) := w i − f (xn−1 + �t

s∑
j=1

aij w j, tn−1 + ci�t), i ∈N(s) (2.6)

and the state is explicitly updated as

xn = xn−1 + �t
s∑

i=1

bi wn
i . (2.7)

Here, the unknowns wn
i correspond to the velocity dx/dt at times tn−1 + ci�t , i ∈ N(s), and the coefficients bi , ci , and aij

define a specific Runge–Kutta scheme. These methods are explicit if aij = 0, ∀ j ≥ i and are diagonally implicit if aij = 0, 
∀ j > i.

3. Galerkin ROM

This section provides the time-continuous and time-discrete representations of the Galerkin ROM, as well as key results 
related to optimality and commutativity of projection and time discretization.

3.1. Continuous representation

Galerkin-projection reduced-order models compute an approximate solution x̃ ≈ x with x̃ ∈ R
N to Eq. (2.1) by introducing 

two approximations. First, they restrict the approximate solution to lie in a low-dimensional affine trial subspace x0 +
Ran (�), where � ∈ R

N×p with �T � = I denotes the given reduced basis (in matrix form) of dimension p � N and Ran (A)

denotes the range of matrix A. This basis can be computed by a variety of techniques, e.g., eigenmode analysis, POD [35], 
or the reduced-basis method [44,48,56,42,55]. Then, the approximate solution can be expressed as
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x̃(t) = x0 + �x̂(t), (3.1)

where x̂ : [0, T ] → R
p denotes the (time-dependent) generalized coordinates of the approximate solution. Second, these 

methods substitute x ← x̃ into Eq. (2.1) and enforce the ODE residual to be orthogonal to Ran (�), which results in a 
low-dimensional system of nonlinear ODEs

dx̂

dt
= �T f (x0 + �x̂, t), x̂(0) = 0. (3.2)

Remark 3.1. In order to obtain computational efficiency, it is necessary to reduce the computational complexity of repeatedly 
computing matrix–vector products of the form �T f . This can be done using a variety of methods, e.g., collocation [7,49,40], 
gappy POD [27,16,7,19,21], the discrete empirical interpolation method (DEIM) [12,24,32,26,6], reduced-order quadrature 
[5], finite-element subassembly methods [4,29], or reduced-basis-sparsification techniques [23]. However, in this work we 
limit ourselves to comparatively analyzing different projection techniques. For this reason, we do not perform additional 
analysis for such complexity-reduction mechanisms; this is the subject of follow-on work.

We now restate the well-known result that Galerkin projection leads to a notion of minimum-residual optimality at 
the continuous level. This is reflected in the top-right box of Fig. 1, where the bolded outline indicates minimum-residual 
optimality.

Theorem 3.2 (Galerkin: continuous optimality). If the reduced basis is orthogonal, i.e., �T � = I , then the Galerkin ROM (3.1)–(3.2)
is continuous optimal in the sense that the approximated velocity minimizes the �2-norm of the FOM ODE residual (2.1) over Ran (�), 
i.e.,

dx̃

dt
(x0 + �x̂, t) = arg min

v∈Ran(�)
‖v − f (x0 + �x̂, t)‖2

2. (3.3)

Proof. Because dx̃
dt = � dx̂

dt , problem (3.3) can be written as

dx̂

dt
(x0 + �x̂, t) = arg min

v̂∈Rp
g
(

v̂
)
, (3.4)

where g
(

v̂
) := ‖�v̂ − f (x0 + �x̂, t)‖2

2. We now assess whether Eq. (3.4) holds, i.e., whether dx̂
dt as defined by Eq. (3.2) is 

the minimizer of g .
The function g can be expressed as g

(
v̂
)= v̂ T

�T �v̂ − 2v̂ T
�T f (x0 + �x̂, t) + f (x0 + �x̂, t)T f (x0 + �x̂, t). Due to the 

strict convexity of the function g , the global minimizer v̂� is equal to the stationary point of g , i.e., v̂� satisfies

0 = dg

d v̂

(
v̂�
)

= 2�T �v̂� − 2�T f (x0 + �x̂, t) (3.5)

v̂� = �T f (x0 + �x̂, t), (3.6)

where orthogonality of � has been used. Comparing Eqs. (3.6) and (3.2) shows dx̂
dt (x0 + �x̂, t) = v̂� , which is the desired 

result. �
Remark 3.3 (Galerkin ROM enrichment yields a monotonic decrease in the FOM ODE residual). Due to optimality property (3.3) of 
the Galerkin ROM, adding vectors to the trial basis—which enriches the trial subspace Ran (�)—results in a monotonic de-
crease in the minimum-residual objective function in problem (3.3), which is simply the �2-norm of the FOM ODE residual. 
Because the FOM ODE residual is equivalent to the difference between the ROM and FOM velocities, this implies that the 
�2-norm of the error in the ROM velocity will monotonically decrease as the trial subspace is enriched.

Thus, Galerkin ROMs exhibit desirable properties (i.e., minimum-residual optimality) at the time-continuous level. We 
now derive a time-discrete representation for the Galerkin ROM, noting that these properties are lost at the time-discrete 
level.

3.2. Discrete representation

As before, a time-discretization method is needed to numerically solve Eq. (3.2). We now characterize the O�E for the 
Galerkin ROM.
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3.2.1. Linear multistep schemes
A linear k-step method applied to numerically solve Eq. (3.2) can be expressed as

k∑
j=0

α j x̂
n− j = �t

k∑
j=0

β j�
T f
(

x0 + �x̂n− j
, tn− j
)

.

Here, the O�E is characterized by the following system of algebraic equations to be solved at each time step:

r̂n
(

ŵn
)

= 0. (3.7)

Here, the discrete residual corresponds to

r̂n (ŵ) := α0 ŵ − �tβ0�
T f (x0 + �ŵ, tn) +

k∑
j=1

α j x̂
n− j − �t

k∑
j=1

β j�
T f
(

x0 + �x̂n− j
, tn− j
)

(3.8)

and the generalized state is explicitly updated as

x̂n = ŵn
.

3.2.2. Runge–Kutta schemes
Applying an s-stage Runge–Kutta method to solve Eq. (3.2) leads to an O�E characterized by the following system of 

algebraic equations to be solved at each time step:

r̂n
i

(
ŵn

1, . . . , ŵn
s

)
= 0, i ∈N(s). (3.9)

Here, discrete the residual is defined as

r̂n
i

(
ŵ1, . . . , ŵ s

) := ŵ i − �T f (x0 + �x̂n−1 + �t
s∑

j=1

aij�ŵ j, tn−1 + ci�t), i ∈N(s) (3.10)

and the generalized state is computed explicitly as

x̂n = x̂n−1 + �t
s∑

i=1

bi ŵn
i . (3.11)

Note that the Galerkin-ROM solution satisfying Eqs. (3.7) or (3.9) does not in general associate with the solution to an 
optimization problem; therefore, the optimality property the method exhibits at the continuous level has been lost at the 
discrete level. We now show that Galerkin projection and time discretization are commutative; this implies that Galerkin 
ROMs can be analyzed, implemented, and interpreted equivalently at both the time-discrete and time-continuous levels. 
This corresponds to the rightmost part of Fig. 1.

Theorem 3.4 (Galerkin: commutativity of projection and time discretization). Performing a Galerkin projection on the governing ODE 
and subsequently applying time discretization yields the same model as first applying time discretization on the governing ODE and 
subsequently performing Galerkin projection.

Proof. Linear multistep schemes. Eq. (3.7) was derived by performing Galerkin projection on the continuous representation 
of the FOM and subsequently applying time discretization. If instead we apply Galerkin projection to the discrete represen-
tation of the FOM in Eq. (2.3), set w = x0 + �ŵ and xi = x0 + �x̂i , i ∈N(n), and use 

∑k
j=1 α j = 0 and �T � = I , we obtain 

the following O�E to be solved at each time step: �T rn
(
x0 + �ŵ

) = 0. Comparing the definition of the linear multistep 
residual (2.4) with Eq. (3.8) reveals

r̂n (ŵ)= �T rn (x0 + �ŵ
)
, (3.12)

which shows that the same discrete equations r̂n (ŵ)= 0 are obtained at each time step regardless of the ordering of time 
discretization and Galerkin projection.

Runge–Kutta schemes. Eq. (3.9) was derived by performing Galerkin projection on the continuous FOM representation and 
then applying time discretization. If instead we apply Galerkin projection to the discrete FOM representation in Eq. (2.5), 
set xn−1 = x0 + �x̂n−1, w i = �ŵ i , i ∈ N(s), and use �T � = I , we obtain the following O�E to be solved at each time 
step: �T rn

i

(
�ŵ1, . . . ,�ŵ s

) = 0, i ∈ N(s). Comparing the definition of the Runge–Kutta residual (2.6) with Eq. (3.10) re-
veals
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r̂n
i

(
ŵ1, . . . , ŵ s

)= �T rn
i

(
�ŵ1, . . . ,�ŵ s

)
, i ∈ N(s), (3.13)

which shows that the same discrete equations r̂n
i

(
ŵ1, . . . , ŵ s

)= 0, i ∈N(s) are obtained at each time step regardless of the 
ordering of time discretization and Galerkin projection. �
4. Least-squares Petrov–Galerkin ROM

Rather than performing minimum-residual optimal projection on the full-order model ODE (i.e., at the continuous level), 
this can be executed on the full-order model O�E (i.e., at the discrete level). Doing so enables discrete optimality, which 
contrasts with the continuous optimality exhibited by Galerkin projection. In particular, we consider optimal projections 
that minimize the discrete residual(s) (in some weighted �2-norm) arising at each time instance.

We note that other residual-minimizing approaches have been developed in the case of linear [17] and nonlinear [40]
steady-state problems, and space–time solutions [25]. In addition, a recently developed approach [1] has suggested L1

minimization of the residual arising at each time instance for hyperbolic problems.

4.1. Discrete representation

We begin by developing the time-discrete representation for the LSPG ROM for both linear multistep schemes and 
Runge–Kutta schemes. The latter is a novel contribution, as previous work has derived discrete-optimal LSPG ROMs only for 
linear multistep schemes [19,21]. Optimality of this approach corresponds to the bolded bottom-left box of Fig. 1.

4.1.1. Linear multistep schemes
As before with Galerkin projection, discrete-optimal ROMs compute solutions using two approximations. First, they 

restrict the approximate solution to lie in the same low-dimensional affine trial subspace x̃ ∈ x0 + Ran (�) as Galerkin 
methods; thus, the approximate solution can be written according to Eq. (3.1). In the case of linear multistep schemes, the 
unknown at time step n is simply the state, i.e., wn = xn , which implies that w̃n = x0 + �ŵn . Second, the discrete-optimal 
ROM substitutes wn ← w̃n into the O�E (2.3) and solves a minimization problem to ensure the approximate solution is 
optimal in a minimum-residual sense at the discrete level:

w̃n = arg min
z∈x0+Ran(�)

‖A (z) rn (z)‖2
2 (4.1)

or equivalently

ŵn = arg min
ẑ∈Rp

‖A
(
x0 + �ẑ

)
rn (x0 + �ẑ

)‖2
2. (4.2)

Here, A ∈ R
z×N with z ≤ N is a weighting matrix that enables the definition of a weighted (semi)norm. Examples of such 

reduced-order models include the LSPG method presented in Refs. [19,21,40] (A = I ), LSPG with collocation (A = P with 
P consisting of selected rows of the identity matrix) [40], and the related GNAT method [19,21] (A = (P�r)

+ P with �r a 
basis for the residual and the superscript + denoting the Moore–Penrose pseudoinverse).

Note that necessary conditions for the solution to Eq. (4.2) correspond to stationary of the objective function in Eq. (4.2), 
i.e., the solution satisfies

�n(ŵn
)T rn
(

x0 + �ŵn
)

= 0, (4.3)

where the entries of �n ∈ R
N×p are

ψi j
n(ŵ) = ami(x0 + �ŵ)

∂aml(x0 + �ŵ)

∂ wk
φkjr

n
�(x0 + �ŵ)

+ ami(x0 + �ŵ)aml(x0 + �ŵ)
∂rn

�

∂ wk
(x0 + �ŵ)φkj, i ∈ N(N), j ∈N(p),

(4.4)

where a repeated index implies summation. Because Eq. (4.3) corresponds to a Petrov–Galerkin projection with trial 
subspace Ran (�) and test subspace Ran (�), the discrete-optimal projection can be referred to as a least-squares Petrov–
Galerkin projection [21,19].

4.1.2. Runge–Kutta schemes
LSPG ROMs for Runge–Kutta schemes also approximate the solution according to Eq. (3.1). However, because the un-

known at time step n and stage i is the velocity at an intermediate time point, i.e., wn
i = ẋ
(

tn−1 + ci�t
)

for i ∈ N(s), we 

have w̃n
i = � ˙̂x

(
tn−1 + ci�t

)
for this case. Then, these techniques substitute wn ← w̃n into the O�E (2.5) and solve the 

following minimum-residual problem:
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(
w̃n

1, . . . , w̃n
s

)
= arg min

(z1,...,z1)∈Ran(�)s

s∑
i=1

‖Ai (z1, . . . , zs) rn
i (z1, . . . , zs)‖2

2 (4.5)

or equivalently

(
ŵn

1, . . . , ŵn
s

)
= arg min(

ẑ1,...,ẑs
)∈Rp×s

s∑
i=1

‖Ai
(
�ẑ1, . . . ,�ẑs

)
rn

i

(
�ẑ1, . . . ,�ẑs

)‖2
2. (4.6)

Here, Ai ∈ R
z×N , i ∈N(s) with z ≤ N are weighting matrices. As before, the solution to Eq. (4.6) corresponds to a stationary 

point of the objective function, i.e., it satisfies

s∑
j=1

�n
i j(ŵn

1, . . . , ŵn
s )

T rn
j

(
�ŵn

1, . . . ,�ŵn
s

)
= 0, i = 1, . . . , s, (4.7)

where entries of the test bases �n
i j ∈R

N×p , i, j ∈N(s) are[
�n

i j

]
k�

(ŵ1, . . . , ŵ s) = [Ai]uk(�ŵ1, . . . ,�ŵ s)
∂[Ai]um(�ŵ1, . . . ,�ŵ s)

∂[w j]n
φn�[rn

i ]m(�ŵ1, . . . ,�ŵ s)

+ [Ai]uk(�ŵ1, . . . ,�ŵ s)[Ai]um(�ŵ1, . . . ,�ŵ s)
∂[rn

i ]m

∂[w j]n
(�ŵ1, . . . ,�ŵ s)φn�,

(4.8)

where [·]i j denotes entry (i, j) of the argument. This again leads to a least-squares Petrov–Galerkin interpretation for the 
discrete-optimal ROM.

In the explicit or diagonally implicit cases, we can consider an alternative notion of discrete optimality. Explicit Runge–
Kutta schemes are characterized by aij = 0, ∀ j ≥ i, while diagonally implicit Runge–Kutta (DIRK) schemes [2] are character-
ized by aij = 0, ∀ j > i. In these cases, solutions wn

i , i ∈N(s) can be computed sequentially, i.e.,

qn
i

(
wn

i

)= 0, i = 1, . . . , s

with

qn
i (w) := w − f (xn−1+�taii w + �t

i−1∑
j=1

aij wn
j , tn−1 + ci�t), i = 1, . . . , s. (4.9)

We can then formulate the following sequence of optimization problems to compute discrete minimum-residual approxi-
mations:

w̃n
i = arg min

z∈Ran(�)
‖Ai(z)qn

i (z)‖2
2, i = 1, . . . , s, (4.10)

or equivalently

ŵn
i = arg min

ẑ∈Rp
‖Ai(�ẑ)qn

i (�ẑ)‖2
2, i = 1, . . . , s. (4.11)

Here, the associated Petrov–Galerkin projection is

�n
i (ŵn

i )
T qn

i (�ŵn
i ) = 0, i = 1, . . . , s, (4.12)

with test-basis entries of

[
�n

i

]
jk(ŵ) = [Ai]u j(�ŵ)

∂[Ai]u�(�ŵ)

∂ wm
φmk[qn

i ]�(�ŵ) + [Ai]u j(�ŵ)[Ai]um(�ŵ)
∂[qn

i ]m(�ŵ)

∂ w�

φ�k. (4.13)

Note that in the explicit case, the LSPG ROM generally requires solving a system of nonlinear equations at each Runge–Kutta 
stage. Because ∂qn

i /∂ w = I , the system of equations is linear if Ai are constant matrices, and only an explicit solution 
update is required if Ai = I and �T � = I .

Remark 4.1 (LSPG ROM enrichment yields a monotonic decrease in the FOM O�E residual). Due to optimality property (4.1) of the 
LSPG ROM, adding vectors to the trial basis—which enriches the trial subspace Ran (�)—results in a monotonic decrease in 
the minimum-residual objective function in problem (4.1), which is simply the weighted �2-norm of the FOM O�E residual 
associated with linear multistep schemes. This result also holds for LSPG ROMs applied to Runge–Kutta schemes, as the 
computed solutions satisfy alternative optimality properties in the implicit (4.5) and explicit/diagonally implicit (4.10) cases.
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We now see the critical tradeoff between the Galerkin and LSPG ROMs: Galerkin ROMs exhibit continuous (minimum-
residual) optimality, while LSPG ROMs exhibit discrete optimality. Without further analysis, it is unclear which of these 
attributes is preferable. Numerical experiments (Section 7) and supporting error analysis (Section 6) will highlight the ben-
efits of discrete optimality over continuous optimality in practice.

4.2. Continuous representation

Because the LSPG ROM introduces approximations at the discrete level, it is unclear whether it can be interpreted at 
the continuous level. In fact, it has not previously been shown that a continuous representation of the LSPG ROM even 
exists. We now show that an ODE representation of the LSPG ROM does indeed exist for both linear multistep schemes and 
Runge–Kutta schemes under certain conditions; however, the ODE depends on the time step used to define the LSPG ROM. 
This associates with the top-left section of the relationship diagram in Fig. 1.

Theorem 4.2 (LSPG ROM continuous representation: linear multistep schemes). The LSPG ROM for linear multistep integrators is equiv-
alent to applying a Petrov–Galerkin projection to the ODE with test basis (in matrix form)

�(x̂, t) = AT A
(
α0 I − �tβ0

∂ f

∂ξ
(x0 + �x̂, t)

)
� (4.14)

and subsequently applying time integration with a linear multistep scheme with time step �t if A is a constant matrix and (at least) 
one of the following conditions holds:

1. β j = 0, j ≥ 1 (e.g., a single-step method),
2. the velocity f is linear in the state, or
3. β0 = 0 (i.e., explicit schemes).

Proof. Applying Petrov–Galerkin projection to the full-order model ODE (2.1) using a trial subspace x0 + Ran (�) and test 
subspace Ran (�) yields the following ODE

�(x̂, t)T �
dx̂

dt
= �(x̂, t)T f (x0 + �x̂, t), x̂(0) = 0, (4.15)

which can be written in standard form as

dx̂

dt
=
(
�(x̂, t)T �

)−1
�(x̂, t)T f (x0 + �x̂, t), x̂(0) = 0. (4.16)

Case 1 Applying a linear multistep time integrator with the stated assumption of β j = 0, j ≥ 1 to numerically solve Eq. (4.16)
results in the following discrete equations to be solved at each time instance:

α0 ŷn − �tβ0

(
�( ŷn

, tn)T �
)−1

�( ŷn
, tn)T f (x0 + � ŷn

, tn) +
k∑

j=1

α j x̂
n− j = 0. (4.17)

Pre-multiplying by �( ŷn
, tn)T � yields discrete equations r̂n

(
ŷn
)

= 0 with residual

r̂n (ŵ) := α0�(ŵ, tn)T �ŵ − �tβ0�(ŵ, tn)T f (x0 + �ŵ, tn) +
k∑

j=1

α j�(ŵ, tn)T �x̂n− j
. (4.18)

Comparing Eqs. (4.18) and (2.4) reveals r̂n (ŵ)= �(ŵ, tn)T rn
(
x0 + �ŵ

)
and so the solution ŷn satisfies

�( ŷn
, tn)T rn

(
x0 + � ŷn

)
= 0. (4.19)

Under the stated assumptions, we have ∂rn/∂ w(x) = α0 I − �tβ0
∂ f
∂ξ (x, tn) and so the LSPG test basis �n defined in 

Eq. (4.4) is equal to the test basis in Eq. (4.14) evaluated at time instance n, i.e., �n(ŵ) = �(ŵ, tn). Therefore, the solution 
ŵn to the LSPG O�E (4.3) satisfies

�(ŵn
, tn)T rn

(
x0 + �ŵn

)
= 0. (4.20)

This shows that ŵn = ŷn , i.e., the solutions to the LSPG O�E and the O�E obtained after applying Petrov–Galerkin projec-
tion with test basis �(x, t) defined by Eq. (4.14) to the full-order model ODE and subsequently applying time integration 
are equivalent under the stated assumptions, which is the desired result.
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Case 2 In this case, the test basis is independent of the state, i.e.,

�(t) = AT A
(
α0 I − �tβ0

∂ f

∂ξ
(·, t)

)
�. (4.21)

Applying a linear multistep time integrator to solve Eq. (4.16) and subsequently pre-multiplying by the constant matrix 
�(tn)T � yields the following discrete equations arising at each time step

r̂n
(

ŷn
)

= 0, (4.22)

where the residual is defined as

r̂n (ŵ) := α0�(tn)T �ŵ − �tβ0�(tn)T f (x0 + �ŵ, tn) +
k∑

j=1

α j�(tn)T �x̂n− j

− �t
k∑

j=1

β j�(tn)T f
(

x0 + �x̂n− j
, tn− j
)

.

(4.23)

Comparing Eqs. (4.23) and (2.4) reveals r̂n (ŵ)= �(tn)T rn
(
x0 + �ŵ

)
and so the solution ŷn satisfies

�(tn)T rn
(

x0 + � ŷn
)

= 0. (4.24)

Under these assumptions, we have ∂rn/∂ w = α0 I − �tβ0∂ f /∂ξ (·, tn) and so the LSPG test basis �n defined in Eq. (4.4) is 
equal to the test basis in Eq. (4.21) at time instance n, i.e., �n(ŵ) = �(tn). Therefore, the LSPG O�E (4.3) can be expressed 
as

�(tn)T rn
(

x0 + �ŵn
)

= 0. (4.25)

This shows that ŵn = ŷn , i.e., the solutions to the LSPG O�E and the O�E obtained after applying Petrov–Galerkin projec-
tion with test basis �(t) defined by Eq. (4.14) to the full-order model ODE and subsequently applying time integration are 
equivalent under the stated assumptions.

Case 3 The assumption β0 = 0 results in a constant test basis

� = α0 AT A�. (4.26)

Applying a linear multistep time integrator to solve Eq. (4.16) and subsequently pre-multiplying by the constant matrix 
�T � yields

r̂n
(

ŷn
)

= 0, (4.27)

which is to be solved at each time step with a residual defined as

r̂n (ŵ) := α0�
T �ŵ − �tβ0�

T f (x0 + �ŵ, tn) +
k∑

j=1

α j�
T �x̂n− j − �t

k∑
j=1

β j�
T f
(

x0 + �x̂n− j
, tn− j
)

. (4.28)

As in Case 2, this leads to r̂n (ŵ)= �T rn
(
x0 + �ŵ

)
. Because ∂rn

∂ w (x) = α0 I , we also again have �n(ŵ) = � . This leads to 
the desired result, as the O�Es for the LSPG ROM and the ROM obtained after applying Petrov–Galerkin projection with test 
basis � to the full-order model ODE and subsequently applying time integration both satisfy � T rn(x0 + �ŵn

) = 0 under 
the stated assumptions. �

We now provide conditions under which the LSPG ROM for Runge–Kutta schemes can be expressed as an ODE.

Theorem 4.3 (LSPG ROM continuous representation: Runge–Kutta schemes). The LSPG ROM for Runge–Kutta integrators is equivalent 
to applying a Petrov–Galerkin projection to the ODE with test basis (in matrix form)

�(x̂, t) = AT A

(
I − �ta

∂ f

∂ξ
(x0 + �x̂, t)

)
� (4.29)

and subsequently applying time integration if Ai = A, ∀i are constant matrices and the integrator is a singly diagonally implicit 
Runge–Kutta (SDIRK) scheme, i.e., aij = 0, ∀ j > i and aii = a, ∀i.2

2 Note that summation on repeated indices is not implied.
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Proof. Applying Petrov–Galerkin projection to Eq. (2.1) using a trial subspace x0 + Ran (�) and test subspace Ran (�) yields 
the following ODE (in standard form)

dx̂

dt
=
(
�(x̂, t)T �

)−1
�(x̂, t)T f (x0 + �x̂, t), x̂(0) = 0. (4.30)

Applying an SDIRK time integrator to numerically solve Eq. (4.30) results in the following sequence of discrete equations to 
be solved at each time step:

ŷn
i −[(�(x̂n−1 + �t

i∑
j=1

aij ŷn
j , tn−1 + ci�t)T �]−1�(x̂n−1 + �t

i∑
j=1

aij ŷn
j , tn−1 + ci�t)T

× f (x0 + �x̂n−1 + �t
i∑

j=1

aij� ŷn
j , tn−1 + ci�t) = 0, i = 1, . . . , s.

(4.31)

Pre-multiplying by �(x̂n−1 + �t
∑i

j=1 aij ŷ j, tn−1 + ci�t)T � yields the following discrete equations

q̂n
i

(
ŷn

i

)
= 0, i = 1, . . . , s

with residual

q̂n
i (ŵ) :=�(x̂n−1 + �taŵ + �t

i−1∑
j=1

aij ŷn
j , tn−1 + ci�t)T

×
⎡
⎣�ŵ − f (x0 + �x̂n−1 + �taŵ + �t

i−1∑
j=1

aij� ŷn
j , tn−1 + ci�t)

⎤
⎦ .

(4.32)

Comparing Eqs. (4.32) and (4.9) reveals

q̂n
i (ŵ) = �(x̂n−1 + �taŵ + �t

i−1∑
j=1

aij ŷn
j , tn−1 + ci�t)T qn

i

(
�ŵ
)
, i = 1, . . . , s

such that the solutions ŷn
i satisfy

�(x̂n−1 + �t
i∑

j=1

aij ŷn
j , tn−1 + ci�t)T qn

i

(
ŷn

i

)
= 0, i = 1, . . . , s. (4.33)

Now, under the stated assumptions, we have

∂qn
i

∂ w
(u) = I − �ta

∂ f

∂ξ
(xn−1 + �tau + �t

i−1∑
j=1

aij wn
j , tn−1 + ci�t)

such that the LSPG test basis �n
i defined in Eq. (4.13) is related to the test basis in Eq. (4.29) as follows:

�n
i (ŵ) = �(x̂n−1 + �taŵ + �t

i−1∑
j=1

aij ŵn
j , tn−1 + ci�t).

Therefore, the solutions ŵn
i to the LSPG O�E (4.12) satisfy

�(x̂n−1 + �t
i∑

j=1

aij ŵn
j , tn−1 + ci�t)T qn

i

(
ŵn

i

)
= 0, i = 1, . . . , s. (4.34)

Comparing Eqs. (4.33) and (4.34) shows that the ŵn
i = ŷn

i , i ∈ N(s), i.e., the solutions to the LSPG O�E and the O�E 
obtained after applying Petrov–Galerkin projection with test basis �(x, t) defined by Eq. (4.29) to the full-order model ODE 
and subsequently applying time integration are equivalent under the stated assumptions, which is the desired result. �

We now show that the LSPG ROM has a time-continuous representation for all explicit and single-state Runge–Kutta 
schemes, which include the widely used forward Euler, backward Euler, and implicit midpoint schemes.



704 K. Carlberg et al. / Journal of Computational Physics 330 (2017) 693–734
Corollary 4.4 (LSPG ROM continuous representation: explicit Runge–Kutta). The LSPG ROM for Runge–Kutta integrators is equivalent 
to applying a Petrov–Galerkin projection to the ODE with test basis (in matrix form)

�(x̂, t) = AT A�

and subsequently applying time integration if Ai = A, ∀i are constant matrices and an explicit Runge–Kutta scheme is employed.

Proof. Explicit Runge–Kutta schemes are characterized by aij = 0, j ≥ i and so they satisfy the conditions Theorem 4.3 with 
a = 0. �
Corollary 4.5 (LSPG ROM continuous representation: single-stage Runge–Kutta). The LSPG ROM for Runge–Kutta integrators is equiv-
alent to applying a Petrov–Galerkin projection to the ODE with test basis (in matrix form)

�(x̂, t) = AT A
(

I − �ta11
∂ f

∂ξ
(x0 + �x̂, t)

)
�

and subsequently applying time integration if Ai = A, ∀i are constant matrices and a single-stage Runge–Kutta scheme is employed.

Proof. Single-stage Runge–Kutta schemes are characterized by s = 1 and so they satisfy the conditions of Theorem 4.3 with 
a = a11. �
5. Equivalence conditions

This section performs theoretical analysis that highlights cases in which Galerkin and LSPG ROMs are equivalent, in 
which case the Galerkin ROM exhibits both continuous and discrete optimality. This suggests that time discretization and 
minimum-residual projection are commutative in these scenarios. Section 5.1 shows that equivalence holds for explicit time 
integrators, Section 5.2 demonstrates equivalence in the limit of �t → 0, and Section 5.3 shows equivalence in the case of 
symmetric-positive-definite residual Jacobians.

5.1. Equivalence for explicit integrators

Corollary 5.1 (Equivalence: explicit linear multistep scheme). Galerkin projection is equivalent to LSPG projection with A = 1√
α0

I for 
explicit linear multistep schemes.

Proof. In the case of explicit linear multistep schemes, β0 = 0 and so Galerkin projection corresponds to Case 3 of Theo-
rem 4.2 with A = 1√

α0
I , as � = � in this case. �

Corollary 5.2 (Equivalence: explicit Runge–Kutta scheme). Galerkin projection is equivalent to LSPG projection with A = I for explicit 
Runge–Kutta schemes.

Proof. In the case of explicit Runge–Kutta schemes, aij = 0 ∀ j ≥ i and so Galerkin projection corresponds to Theorem 4.3
with A = I and a = 0, as � = � in this case. �
5.2. Equivalence in the limit of �t → 0

Theorem 5.3 (Limiting equivalence). In the limit of �t → 0, Galerkin projection is equivalent to LSPG projection with A = 1√
α0

I for 
linear multistep schemes and Ai = I , i ∈N(s) for Runge–Kutta schemes.

Proof. Linear multistep schemes. Consider solving the LSPG O�E (4.3) with A = 1√
α0

I . Then, the test basis defined in 
Eq. (4.4) is simply

�n(ŵ) = 1

α0

∂rn

∂ w

(
x0 + �ŵ

)
�.

From Eq. (2.4), we can write the residual Jacobian as

∂rn

∂ w
(u) = α0 I − �tβ0

∂ f

∂ξ
(u, tn).

Therefore, we have
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lim
�t→0

�n(ŵ) = lim
�t→0

1

α0

(
α0 I − �tβ0

∂ f

∂ξ
(x0 + �ŵ, tn)

)
� = �

and so in the limit of �t → 0, the LSPG ROM solution satisfies

lim
�t→0

�n(ŵ)T rn
(

x0 + �ŵn
)

= �T rn
(

x0 + �ŵn
)

= 0. (5.1)

Because the Galerkin ROM solution also satisfies Eq. (5.1) (see Eq. (3.12) of Theorem 3.4), the two techniques are equivalent 
in this limit, which is the desired result.

Runge–Kutta schemes. Consider solving the LSPG O�E (4.7) with Ai = I , i ∈N(s). Then, the test basis defined in Eq. (4.8) is 
simply

�n
i j(ŵ1, . . . , ŵ s) = ∂rn

i

∂ w j
(�ŵ1, . . . ,�ŵ s)�.

Now, from Eq. (2.6) the Jacobian can be expressed as

∂rn
i

∂ w j
(u1, . . . , us) = Iδi j − �tai j

∂ f

∂ξ
(xn−1 + �t

s∑
j=1

aij u j, tn−1 + ci�t).

Therefore, we have

lim
�t→0

�n
i j(ŵ1, . . . , ŵ s) = lim

�t→0

⎛
⎝Iδi j − �tai j

∂ f

∂ξ
(xn−1 + �t

s∑
j=1

aij u j, tn−1 + ci�t)

⎞
⎠� = �δi j

and so in the limit of �t → 0, the LSPG ROM solution satisfies

lim
�t→0

s∑
j=1

�n
i j(ŵ1, . . . , ŵ s)

T rn
j

(
�ŵn

1, . . . ,�ŵn
s

)
= �T rn

i

(
x0 + �ŵn

)
= 0, i ∈N(s). (5.2)

Because the Galerkin ROM solution also satisfies Eq. (5.2) (see Eq. (3.13) of Theorem 3.4), the two techniques are equivalent 
in this limit, which is the desired result. �
5.3. Equivalence for symmetric-positive-definite residual Jacobians

Theorem 5.4 (Equivalence: linear multistep schemes). In the case of linear multistep schemes, Galerkin projection is equivalent to LSPG 
projection with A (z) = U (z), where U is the Cholesky factor3 of the residual-Jacobian inverse[

∂rn

∂ w

]−1

= U T U , (5.3)

if ∂rn/∂ w
(

wn, tn
)= α0 I − �tβ0

∂ f
∂ξ

(
wn, tn

)
is symmetric positive definite and if

∂ui�

∂ wk
φkjr

n
� = 0, ∀i,k. (5.4)

Here, index notation has been used.

Proof. Under the stated assumptions, the LSPG test basis defined in Eq. (4.4) is equal to the trial basis, i.e., �n(ŵn
) =

�. By invoking Eq. (3.12), we can see that the O�Es for the LSPG ROM (4.3) and Galerkin ROM (3.7) both satisfy 
�T rn
(

x0 + �ŵn
)

= 0, which is the desired result. �
Theorem 5.5 (Equivalence: diagonally implicit Runge–Kutta schemes). In the case of diagonally implicit Runge–Kutta schemes, 
Galerkin projection is equivalent to LSPG projection with Ai (z) = U i (z), where U i is the Cholesky factor of the residual-Jacobian 
inverse[

∂qn
i

∂ w

]−1

= U T
i U i, (5.5)

3 Its derivative can be computed by solving the Lyapunov equation ∂U
∂ w

T
U + U ∂U

∂ w = − 
[

∂rn

∂ w

]−1
∂2rn

∂ w∂ w

[
∂rn

∂ w

]−1
.

k k k
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if ∂qn
i /∂ w
(

wn, tn
)= I − �taii

∂ f
∂ξ

(
xn−1 + �taii wn + �t

∑i−1
j=1 aij wn

j , tn−1 + ci�t
)

is symmetric positive definite and if

∂[U i] j�

∂ wm
φmk[qn

i ]n
� = 0, ∀ j,k. (5.6)

Here, index notation has been used.

Proof. Under the stated assumptions, the LSPG test basis defined in Eq. (4.13) is equal to the trial basis, i.e., �n
i (ŵn

i ) = �, 
i ∈ N(s). By invoking Eq. (3.13), we can see that the O�Es for the LSPG ROM (4.12) and Galerkin ROM (3.9) both satisfy 
�T qn

i

(
�ŵn

i

)
= 0, i = 1, . . . , s, which is the desired result. �

Theorem 5.6 (Equivalence: implicit Runge–Kutta schemes). In the case of Runge–Kutta schemes, Galerkin projection exhibits discrete 
optimality if ∂ r̄n/∂ w̄

(
w̄n, tn

)
is symmetric positive definite and if

∂ ūi�

∂ w̄k
φ̄kjr̄

n
� = 0, ∀i,k. (5.7)

Here, index notation has been used and Ū∈R
sN×sN is the Cholesky factor of the residual-Jacobian inverse, i.e.,[

∂ r̄n

∂ w̄

]−1

= Ū
T

Ū . (5.8)

Here,

w̄ :=

⎡
⎢⎢⎣

w1
...

w s

⎤
⎥⎥⎦ ∈R

sN , r̄n : w̄ �→

⎡
⎢⎢⎣

rn
1 (w1, . . . , w s)

...

rn
s (w1, . . . , w s)

⎤
⎥⎥⎦ ∈R

sN , �̄ :=

⎡
⎢⎢⎣

�

. . .

�

⎤
⎥⎥⎦ ∈R

sN×sp .

Proof. First, note that solution (ŵn
1, . . . , ŵ

n
s ) to the Galerkin O�E (3.13) equivalently satisfies

�̄
T

r̄n
(
�̄ ˆ̄wn
)

= 0,

where ˆ̄w :=
[

ŵ T
1 · · · ŵ T

s

]T ∈ R
sp . We are now precisely in the situation of Theorem 5.4: the Galerkin solution is the 

solution to the (discrete) optimization problem

minimize
z∈Ran

(
�̄
) ‖Ū (z) r̄n (z)‖2

2 (5.9)

under the assumed conditions. This objective function can be written equivalently as

‖Ū (z) r̄n (z)‖2
2 =

s∑
i=1

‖
s∑

j=1

Ū i j (z1, . . . , zs) rn
j (z1, . . . , zs)‖2

2, (5.10)

where Ū i j ∈R
N×N denotes the (i, j) block of Ū . Therefore, the Galerkin ROM solution satisfies

(ŵn
1, . . . , ŵn

s ) = arg min(
ẑ1,...,ẑs

)∈Rp×s

s∑
i=1

‖
s∑

j=1

Ai j
(
�ẑ1, . . . ,�ẑs

)
rn

j

(
�ẑ1, . . . ,�ẑs

)‖2
2, (5.11)

where Ai j = Ū i j . Comparing Eqs. (5.11) and (4.6) reveals that the Galerkin ROM satisfies a slightly more general notion of 
discrete optimality than the LSPG schemes considered in this work. �

This analysis demonstrates that Galerkin projection exhibits discrete optimality when the residual Jacobian is symmetric 
positive definite. This is aligned with recent work that has shown Galerkin projection to be effective for Lagrangian dy-
namical systems [39,22,23]—which are characterized by symmetric-positive-definite residual Jacobians—due to the fact that 
Galerkin projection preserves properties such as symplectic time evolution and energy conservation. For these reasons, using 
Galerkin projection is sensible for problems exhibiting these characteristics.
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6. Error analysis

Ultimately, we are interested in assessing the state-space error between the (computed) time-discrete ROM solution and 
the (unknown) time-continuous FOM solution. This error comprises two contributions: the state-space error between (1) 
the time-continuous FOM and time-discrete FOM solutions (i.e., time-discretization error), and (2) the time-discrete ROM 
and time-discrete FOM solutions. This section focuses on the latter and performs time-discrete state-space error analyses 
for Galerkin and LSPG ROMs applied to different time integrators.

Section 6.1 derives error bounds for the Galerkin and LSPG ROMs for linear multistep schemes. Here, Theorem 6.1 re-
ports local a posteriori error bounds; Lemma 6.2 provides conditions under which oblique projection can be associated with 
discrete-residual minimization; Corollary 6.3 highlights the relationship between discrete and continuous residual minimiza-
tion characterizing the LSPG and Galerkin ROMs, respectively; Corollary 6.4 provides conditions under which the LSPG ROM 
produces lower local a posteriori error bounds than the Galerkin ROM; Theorem 6.5 provides global a posteriori bounds that 
depend on the ROM solution; Theorem 6.6 provides a simplified (although less sharp) variant of these bounds; Corollary 6.7
provides a time-step-independent variant of these bounds; Corollary 6.8 writes these bounds in terms of the discrete resid-
ual; and Remark 6.9 compares the error bounds produced by Galerkin and LSPG ROMs in terms of their respective optimality 
properties. Next, Corollaries 6.10–6.13 provide analogous a priori bounds that exhibit limited dependence on the ROM solu-
tions, and Remark 6.14 provides a discussion of the role of optimality in these a priori bounds.

Section 6.2 provides global a posteriori and a priori error bounds for the backward Euler scheme, as well as additional 
analyses that highlight the important role of the time step in the LSPG ROM, which is discussed in Remark 6.18.

Section 6.3 derives error bounds for Runge–Kutta schemes. Here, Theorem 6.19 provides global a posteriori bounds and 
Corollary 6.20 specializes these results to explicit Runge–Kutta and DIRK schemes. Next, Corollary 6.21 reports global a priori
bounds for Runge–Kutta schemes; Corollary 6.22 reports a time-step-independent variant of this bound for the Galerkin 
ROM; Corollary 6.23 report simplified global a priori bounds for the LSPG ROM for explicit Runge–Kutta and DIRK schemes; 
and Corollary 6.24 reports a time-step-independent variant of LSPG ROM error bounds for explicit Runge–Kutta and DIRK 
schemes.

6.1. Linear multistep schemes

Here, we perform error analysis for implicit linear multistep schemes. We will use subscripts �, G and P to denote 
the solution to full-order model O�E (2.3), Galerkin ROM O�E (3.7), and the LSPG ROM O�E (4.3), respectively. We also 
acknowledge that linear multistep schemes with k > 1 usually employ different coefficients β j and α j for different time 
instances; this is necessary because at time instance n, a maximum of n + 1 states is available from past history (starting 
with the initial condition at n = 0). Therefore, we allow for coefficients that depend on the time instance n, i.e., αn

j and 
βn

j . In addition, we define �n := �n(x̂n
P ) whose entries are defined by Eq. (4.4). We can then write the discrete equations 

arising at each time instance n for linear multistep schemes as

αn
0xn

� = βn
0�t f

(
x0 + xn

�, tn)+ r̄n
�

[
xn−k
� , . . . , xn−1

�

]
, x0

� = 0 (6.1)

αn
0 x̂n

G = βn
0�t�T f

(
x0 + �x̂n

G , tn
)

+ r̄n
G

[
x̂n−k

G , . . . , x̂n−1
G

]
, x̂0

G = 0 (6.2)

αn
0 x̂n

P = βn
0�t
(
(�n)T �

)−1
(�n)T f

(
x0 + �x̂n

P , tn
)

+ r̄n
P

[
x̂n−k

P , . . . , x̂n−1
P

]
, x̂0

P = 0, (6.3)

where

r̄n
�

[
xn−k, . . . , xn−1

]
:=

k∑
�=1

(
βn

� �t f
(

x0 + xn−�, tn−�
)

− αn
� xn−�

)
,

r̄n
G

[
x̂n−k

, . . . , x̂n−1
]

:=
k∑

�=1

(
βn

� �t�T f
(

x0 + �x̂n−�
, tn−�
)

− αn
� x̂n−�

)
,

r̄n
P

[
x̂n−k

, . . . , x̂n−1
]

:=
k∑

�=1

(
βn

� �t
(
(�n)T �

)−1
(�n)T f

(
x0 + �x̂n−�

, tn−�
)

− αn
� x̂n−�

)
,

(6.4)

and xk
� := xk − x0. We also define the FOM residuals at time instance n associated with the trajectories associated with the 

FOM, Galerkin ROM, and LSPG ROM O�Es as

rn
�(x) := αn

0x − �tβn
0 f (x0 + x) − r̄n

�

[
xn−k
� , . . . , xn−1

�

]
(6.5)

rn
G(x) := αn

0x − �tβn
0 f (x0 + x) − r̄n

�

[
�x̂n−k

G , . . . ,�x̂n−1
G

]
(6.6)

rn
P (x) := αn

0x − �tβn
0 f (x0 + x) − r̄n

�

[
�x̂n−k

P , . . . ,�x̂n−1
P

]
. (6.7)
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We define the Galerkin and LSPG operators as

V := ��T , and P
n := �

(
(�n)T �

)−1
(�n)T ,

respectively, and Galerkin and LSPG state-space errors at time instance n as

δxn
G := xn

� − �x̂n
G , and δxn

P := xn
� − �x̂n

P ,

respectively. Note that the Galerkin operator V is an orthogonal projector (� is assumed to be orthogonal), while the 
LSPG operator P is an oblique projector. As the second argument in f does not play any role for linear multistep schemes 
(the time index always matches that of the first argument), will drop it for notational convenience in this section and in 
Section 6.2.

6.1.1. A posteriori error bounds
We proceed by deriving a posteriori error bounds for the Galerkin and LSPG ROMs for linear multistep schemes. We 

assume Lipschitz continuity of f in the first argument:

(A1) There exists a constant κ > 0 such that for x, y ∈ R
N∥∥ f (x) − f (y)

∥∥
2 ≤ κ
∥∥x − y

∥∥
2 .

Theorem 6.1 (Local a posteriori error bounds: linear multistep schemes). If (A1) holds and �t <

∣∣∣α j
0

∣∣∣/(∣∣∣β j
0

∣∣∣κ), ∀ j ∈N(n), then

∥∥δxn
G

∥∥
2 ≤

k∑
�=0

εn
�

∥∥∥∥(I −V
)

f
(

x0 + �x̂n−�
G

)∥∥∥∥
2
+

k∑
�=1

γ n
�

∥∥∥δxn−�
G

∥∥∥
2

(6.8)

∥∥δxn
P

∥∥
2 ≤

k∑
�=0

εn
�

∥∥∥∥(I − P
n) f
(

x0 + �x̂n−�
P

)∥∥∥∥
2
+

k∑
�=1

γ n
�

∥∥∥δxn−�
P

∥∥∥
2
, (6.9)

where we have defined εm
�

:=∣∣βm
�

∣∣�t/hm, γ m
�

:= (
∣∣αm

�

∣∣+∣∣βm
�

∣∣κ�t)/hm, and hm :=∣∣αm
0

∣∣−∣∣βm
0

∣∣κ�t.

Proof. It is sufficient to show bound (6.26), as the arguments for (6.25) are similar. Let n be fixed but arbitrary, then 
subtracting Eq. (6.3) from Eq. (6.1) yields∣∣αn

0

∣∣∥∥δxn
P

∥∥
2 ≤∣∣βn

0

∣∣�t

∥∥∥∥ f
(
x0 + xn

�

)− P
n f
(

x0 + �x̂n
P

)∥∥∥∥
2
+
∥∥∥δrn−1

P

∥∥∥
2
, (6.10)

where δrn−1
P := r̄n

�

[
xn−k
� , . . . , xn−1

�

]
− �r̄n

P

[
x̂n−k

P , . . . , x̂n−1
P

]
. Adding and subtracting f

(
x0 + �x̂n

P

)
and applying the triangle 

inequality leads to

∣∣αn
0

∣∣∥∥δxn
P

∥∥
2 ≤∣∣βn

0

∣∣�t

(∥∥∥∥(I − P
n) f
(

x0 + �x̂n
P

)∥∥∥∥
2
+
∥∥∥∥ f
(
x0 + xn

�

)− f
(

x0 + �x̂n
P

)∥∥∥∥
2

)
+
∥∥∥δrn−1

P

∥∥∥
2
. (6.11)

Invoking (A1), and using �t <
∣∣αn

0

∣∣/ ∣∣βn
0

∣∣κ , we deduce

∥∥δxn
P

∥∥
2 ≤
∣∣βn

0

∣∣�t

hn

∥∥∥∥(I − P
n) f
(

x0 + �x̂n
P

)∥∥∥∥
2
+ 1

hn

∥∥∥δrn−1
P

∥∥∥
2
. (6.12)

Next, we will estimate 
∥∥∥δrn−1

P

∥∥∥
2

. Using the definition of r̄n
� , r̄n

P from Eqs. (6.4) we derive

∥∥∥δrn−1
P

∥∥∥
2
≤

k∑
�=1

(∣∣βn
�

∣∣�t

∥∥∥∥ f
(

x0 + xn−�
�

)
− P

n f
(

x0 + �x̂n−�
P

)∥∥∥∥
2
+∣∣αn

�

∣∣∥∥∥δxn−�
P

∥∥∥
2

)
. (6.13)

Adding and subtracting f
(

x0 + �x̂n−�
P

)
, applying the triangle inequality in conjunction with (A1) yields

∥∥∥δrn−1
P

∥∥∥
2
≤

k∑
�=1

∣∣βn
�

∣∣�t

∥∥∥∥(I − P
n) f
(

x0 + �x̂n−�
P

)∥∥∥∥
2
+

k∑
�=1

(∣∣βn
�

∣∣κ�t +∣∣αn
�

∣∣)∥∥∥δxn−�
P

∥∥∥
2
. (6.14)

Then (6.12) and (6.14) imply Eq. (6.9), where we have used the definitions for εn and γ n . �
� �
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We now establish a result that aids interpretability, as it provides a connection between the terms in the a posteriori
error bounds and the optimality properties of LSPG and Galerkin ROMs. First, we note that

‖(I −V) f
(

x0 + �x̂n
G , tn
)

‖2 = min
y∈Ran(�)

‖y − f
(

x0 + �x̂n
G , tn
)

‖2, (6.15)

due to the optimality property associated with orthogonal projection; this term appears in local a posteriori error 
bound (6.8).

Lemma 6.2 (Oblique projection as discrete-residual minimization). If βn
j = 0, j ≥ 1 (e.g., backward differentiation formulas), then∣∣βn

0

∣∣�t‖(I −V) f
(

x0 + �x̂n
G , tn
)

‖2 = ‖rn
G(�x̂n

G)‖2 (6.16)∣∣βn
0

∣∣�t‖(I − P
n) f
(

x0 + �x̂n
P , tn
)

‖2 = ‖rn
P (�x̂n

P )‖2. (6.17)

If additionally the LSPG ROM employs A = I , then

‖rn
P (�x̂n

P )‖2 = min
y∈Ran(�)

‖rn
P (y)‖2. (6.18)

Proof. From Eq. (6.3), we have

βn
0�tPn f

(
x0 + �x̂n

P , tn
)

=
k∑

�=0

αn
��x̂n−�

P −
k∑

�=1

βn
� �tP f

(
x0 + �x̂n−�

P , tn−�
)

(6.19)

such that

βn
0�t(I − P

n) f
(

x0 + �x̂n
P , tn
)

= βn
0�t f

(
x0 + �x̂n

P , tn
)

−
k∑

�=0

αn
��x̂n−�

P +
k∑

�=1

βn
� �tP f

(
x0 + �x̂n−�

P , tn−�
)

(6.20)

= −rn(x0 + �x̂n−�
P ) − (I − P)

k∑
�=1

βn
� �t f

(
x0 + �x̂n−�

P , tn−�
)

(6.21)

Then, if βn
� = 0, � ≥ 1, the final term vanishes and we have Eq. (6.17), where a similar result (i.e., Eq. (6.16)) holds for the 

Galerkin ROM. If the LSPG ROM employs A = I , then the LSPG ROM solution x̂n
P satisfies Eq. (4.2) with A = I , which yields 

Eq. (6.18). �
Corollary 6.3 (Discrete v. continuous residual minimization). If βn

j = 0, j ≥ 1 (e.g., backward differentiation formulas), the LSPG ROM 
employs A = I , and x̂n−�

P = x̂n−�
G , � = 1, . . . , k, then

min
y∈Ran(�)

‖rn
P (y)‖2 =∣∣βn

0

∣∣�t‖(I − P
n) f
(

x0 + �x̂n
P , tn
)

‖2

≤∣∣βn
0

∣∣�t‖(I −V) f
(

x0 + �x̂n
G , tn
)

‖2 =∣∣βn
0

∣∣�t min
y∈Ran(�)

‖y − f
(

x0 + �x̂n
G , tn
)

‖2.
(6.22)

Proof. Under the stated conditions, rn
G = rn

P and the optimality result Eq. (6.18) holds, yielding the desired result. �
Corollary 6.3 shows that discrete-residual minimization (i.e., LSPG projection) rather than continuous-residual minimiza-

tion (i.e., Galerkin projection) can produce a smaller value of a term that appears in the a posteriori error bounds; for 
example, this term appears on the right-hand side of Eqs. (6.8)–(6.9). This can be interpreted as arising from the fact 
that discrete-residual minimization computes the LSPG ROM solution that minimizes the entire normed quantity, while 
continuous-residual minimization performs orthogonal projection of the velocity given the Galerkin ROM solution.

Corollary 6.4 (LSPG can produce lower local a posteriori error bounds than Galerkin). Under the assumptions of Corollary 6.3 and 
Theorem 6.1, the local a posteriori error bound for the LSPG ROM (6.9) is smaller than that for the Galerkin ROM (6.8).

Proof. Under the conditions of Theorem 6.1, Eqs. (6.9) and (6.8) are valid local a posteriori error bounds. If βn
j = 0, j ≥ 1, 

and x̂n−�
P = x̂n−�

G , � = 1, . . . , k, then these bounds simplify to
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∥∥δxn
G

∥∥
2 ≤ |βn

0 |�t

hm

∥∥∥∥(I −V
)

f
(

x0 + �x̂n−�
G

)∥∥∥∥
2
+

k∑
�=1

γ n
�

∥∥∥δxn−�
P

∥∥∥
2

(6.23)

∥∥δxn
P

∥∥
2 ≤ |βn

0 |�t

hm

∥∥∥∥(I − P
n) f
(

x0 + �x̂n−�
P

)∥∥∥∥
2
+

k∑
�=1

γ n
�

∥∥∥δxn−�
P

∥∥∥
2
, (6.24)

respectively. Under the conditions of Corollary 6.3, inequality (6.22) holds and the right-hand side of (6.24) will be smaller 
than the right-hand side of (6.23). �

This is an interesting result, as it provides conditions under which the LSPG ROM produces a smaller local a posteriori er-
ror bound than the Galerkin ROM. It also provides some theoretical justification for the numerical experiments in Section 7, 
which use the three-point backward-differentiation formula, wherein the LSPG uniformly outperforms the Galerkin ROM.

We now extend to results of Theorem 6.1 to obtain global a posteriori error bounds.

Theorem 6.5 (Global a posteriori error bounds: linear multistep schemes). Under the assumptions of Theorem 6.1, we have

∥∥δxn
G

∥∥
2 ≤

n−1∑
j=0

min(k, j)∑
�=0

⎡
⎣1{0}( j − �) +

∑
(ηi)∈A( j−�)

|(ηi)|∏
i=1

γ
n−∑i−1

m=1 ηm
ηi

⎤
⎦ε

n− j+�
�

∥∥∥∥(I −V
)

f
(

x0 + �x̂n− j
G

)∥∥∥∥
2

(6.25)

∥∥δxn
P

∥∥
2 ≤

n−1∑
j=0

min(k, j)∑
�=0

⎡
⎣1{0}( j − �) +

∑
(ηi)∈A( j−�)

|(ηi)|∏
i=1

γ
n−∑i−1

m=1 ηm
ηi

⎤
⎦ε

n− j+�
�

∥∥∥∥(I − P
n− j+�
)

f
(

x0 + �x̂n− j
P

)∥∥∥∥
2
.

(6.26)

Here, 1A(x) denotes the indicator function, A(p) := {(ηi) | ηi ∈ N(k), 
∑

i ηi = p}, and |(ηi)| denotes the length of the tuple (ηi).

Proof. Notice that the term 
∥∥∥∥(I − P

i
)

f
(

x0 + �x̂i− j
P

)∥∥∥∥
2

in inequality (6.9) corresponds to the error introduced at time 

instance i ∈N(n) from the state at time instance i − j with j ∈ N(k); this term always appears in the time-local error bound 
with coefficient εi

j . Further, it contributes to the error at a given time instance n > i through appropriate products of γ m
� . 

For example, the product γ n
1 γ n−1

2 γ n−3
1 provides one possible path for ‘traversing’ the time-local error bounds from time 

instance n to an earlier error contribution at time instance n − 4. Applying this notion more generally and using δx0
P = 0, 

the error can be bounded by induction according to inequality (6.26). �
The bounds in Theorem 6.5 can be considered a posteriori error bounds, as they depend on the ROM solutions x̂G and 

x̂P and can thus be computed a posteriori if the Lipschitz constant κ can be estimated. Note that the rightmost term in 
the Galerkin bound corresponds to the orthogonal projection error of f onto Ran (�), while the LSPG bound entails an 
oblique projector that depends on the ROM solution. Because this oblique projection can associate with a discrete residual-
minimization property (i.e., Corollary 6.3), the LSPG ROM can yield smaller error bounds (i.e., Corollary 6.4). Also, the first 
term within square brackets corresponds to errors incurred at the current time instance n (i.e., via the leftmost term on the 
right-hand side of inequality (6.9)), while the second term corresponds to all possible ‘paths’ from current time instance 
n to the error contribution at previous time instances (i.e., the rightmost term on the right-hand side of inequality (6.9)). 
We also note the importance of the time-step condition �t <

∣∣∣α j
0

∣∣∣/(∣∣∣β j
0

∣∣∣κ), as the stability constants appearing in bounds 
(6.25)–(6.26) exhibit unbounded growth as the time step �t approaches its upper limit, i.e.,

lim
�t→
∣∣∣αk

0

∣∣∣/(∣∣∣βk
0

∣∣∣κ)

hk = 0, ∀k ∈ N(n),

which implies that

lim
�t→
∣∣∣αk

0

∣∣∣/(∣∣∣βk
0

∣∣∣κ)

εk
� = ∞ and lim

�t→
∣∣∣αk

0

∣∣∣/(∣∣∣βk
0

∣∣∣κ)

γ k
� = ∞, ∀k ∈ N(n).

We now derive a simplified variant of these bounds.

Theorem 6.6 (Simplified global a posteriori error bounds: linear multistep schemes). Under the assumptions of Theorem 6.1, if addi-
tionally �t ≤ |α�|(1 − ε)/(κ |β�|) with 0 < ε < 1, then,
0 0
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(6.27)
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. (6.28)

Here, we have defined∣∣α�
0

∣∣−∣∣β�
0

∣∣κ�t := min
j∈N(n)

∣∣∣α j
0

∣∣∣−∣∣∣β j
0

∣∣∣κ�t (6.29)

∣∣α�
∣∣+∣∣β�

∣∣κ�t := max
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∣∣∣α j
�
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�

∣∣∣κ�t (6.30)∣∣βmax
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j∈N(n), �∈N0(k)
|β j

� | (6.31)

k ≥ ��
ε := max

j∈N(n)
�

j
ε, �n

ε := arg max
�∈N0(k)

εn
�

∥∥∥∥(I − P
n) f
(

x0 + �x̂n−�
P

)∥∥∥∥
2
. (6.32)

Proof. We proceed by proving bound (6.28); the proof for bound (6.27) is similar. First, we define

�n := arg max
�∈N0(k)

γ n
�

∥∥∥δxn−�
P

∥∥∥
2
, (6.33)

as well as a ‘path’ from time instance n backward to the initial time by defining L(0) = n with

L( j + 1) = L( j) − �L( j), j = 0, . . . , n̄ − 1, (6.34)

with n̄ ≤ n and L(n̄) = 0. Then, from local a posteriori error bound (6.9), we have

∥∥δxn
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, (6.35)

where εn
�n
ε
:=∣∣βmax

∣∣�t/(
∣∣α�

0
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0

∣∣κ�t) and γ n
�n := (
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∣∣κ�t). Via recursion, we then obtain
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(6.36)
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(6.37)

≤ (k + 1)
∣∣βmax
∣∣
⎛
⎝n−1∑

m=0

km

(
|α�| + |β�|κ�t

|α�
0| − |β�

0 |κ�t

)m
�t

|α�
0| − |β�

0|κ�t

⎞
⎠ max

j∈N(n)
�∈N0(��

ε)

∥∥∥∥(I − P
j
)

f
(

x0 + �x̂ j−�
P

)∥∥∥∥
2
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(6.39)

≤ (k + 1)
∣∣βmax
∣∣�t

(
k|α�|
|α�

0|

)n exp
(

tnκε−1
(|β�|/|α�| + |β�

0 |/|α�
0|
))− 1

(k|α�| − |α�
0|) + (k|β�| + |β�

0 |)κ�t

× max
j∈N(n)

�∈N (��)

∥∥∥∥(I − P
j
)

f
(

x0 + �x̂ j−�
P

)∥∥∥∥
2
, (6.40)
0 ε
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where we have used(
|α�| + |β�|κ�t

|α�
0| − |β�

0 |κ�t

)n

=
(
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)n(
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)n(
1 + κ�t(|β�|/|α�| + |β�

0 |/|α�
0|)

1 − κ�t|β�
0 |/|α�

0|

)n

,

the relation (1 + x)n ≤ exp(nx), and the following result (with x = 1 + κ�t|β�|/|α�| and y = 1 − κ�t|β�
0 |/|α�

0|): if x ≥ y, 
then (x − y)/y ≤ ε−1(x − y) if and only if y ≥ ε > 0. �

We note that due to the optimality property associated with orthogonal projection, we can write bound (6.27) equiva-
lently as
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2
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(6.41)

We now prove conditions under which the a posteriori error bound is independent of the time step �t and total number of 
time instances n; the bound is fixed for a given time tn .

Corollary 6.7 (Time-step-independent global a posteriori error bounds: linear multistep schemes). Under the assumptions of Theo-
rem 6.6, if additionally k|α�| = |α�

0| (e.g., backward Euler, where k = 1 and |α�| = |α�
0| = 1), then the global a posteriori error bounds 

(6.27)–(6.28) are independent of the time step and simplify to
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(6.42)
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(6.43)

Proof. The result can be derived by substituting k|α�| = |α�
0| into inequalities (6.27) and (6.28). �

We now prove conditions under which a posteriori error bounds (6.27)–(6.28) can be written in ‘residual form’, i.e., in 
terms of the discrete residual arising at each time step. This will enable the respective optimality properties of the Galerkin 
and LSPG ROMs to be compared in Remark 6.9.

Corollary 6.8 (Simplified global a posteriori error bounds in residual form: linear multistep schemes). Under the assumptions of Theo-
rem 6.6, if additionally βm

j = 0, j ≥ 1, ∀m ∈N(n) (e.g., backward differentiation formulas), then,
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If additionally A = I , then
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Proof. Under the stated assumptions βmax = β0, ��
ε = 0, and Lemma 6.2 holds, yielding the desired result. �

Remark 6.9 (Optimality in a posteriori error bounds). Comparing inequalities (6.41) and (6.46) highlights the differences in how 
optimality affects the Galerkin and LSPG ROM error bounds. Writing these expressions more compactly under the conditions 
of Corollary 6.8 yields
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where

υ := (k + 1)

(
k|α�|
|α�

0|

)n exp
(

tnκε−1
(|β�|/|α�| + |β�

0 |/|α�
0|
))− 1

(k|α�| − |α�
0|) + (k|β�| + |β�

0 |)κ�t
.

6.1.2. A priori error bounds
We now derive a priori error bounds by slightly modifying the steps in the above proofs. The most significant difference 

in the subsequent results is that the oblique projection associated with the LSPG ROM no longer associates with residual 
minimization, as the argument of the operators corresponds to the full-order-model solution.

Corollary 6.10 (Local a priori error bounds: linear multistep schemes). If (A1) holds, �t <
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where we have defined ε̄m
�

:=∣∣βm
�

∣∣�t/h̄m γ̄ m
�

:= (
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∣∣κ�t‖Pm‖2 . Other quantities are 
defined in Theorem 6.5.

Proof. Instead of adding and subtracting f
(
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)
between Eqs. (6.10) and (6.11) and between Eqs. (6.13) and (6.14)

in the proof of Theorem 6.5, adding and subtracting Pn f
(
x0 + xn

�

)
and using ‖V‖2 = 1 yields the stated result. �

Note that bound (6.50) is not quite an a priori bound, as the operator Pn depends on the LSPG ROM solution x̂n
P ; while 

this dependence could be removed, the bound in its current form facilitates comparison with the Galerkin bound. The same 
dependence persists for the remaining a priori error bounds in this section.

Corollary 6.11 (Global a priori error bounds: linear multistep schemes). Under the assumptions of Corollary 6.10, we have
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Proof. The result can be derived by following the same steps as Theorem 6.5 based on the local bounds in Corol-
lary 6.10. �
Corollary 6.12 (Simplified global a priori error bounds: linear multistep schemes). Under the assumptions of Corollary 6.10, if addi-
tionally �t ≤ |α�

0|(1 − ε)/(κ |β�
0 |) with 0 < ε < 1 for the Galerkin ROM, and �t ≤ |ᾱ�
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the LSPG ROM, then
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Here, we have defined∣∣ᾱ�
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Proof. The result can be derived by following the same steps as Theorem 6.6 based on the local bounds in Corol-
lary 6.10. �

We now demonstrate conditions under which the a priori error bound is independent of the time step �t .

Corollary 6.13 (Time-step-independent global a priori error bounds: linear multistep schemes). Under the assumptions of Corol-
lary 6.12, if additionally k|α�| = |α�

0| (e.g., backward Euler) for the Galerkin ROM, and k|ᾱ�| = |ᾱ�
0| (e.g., backward Euler) for the 

LSPG ROM, then the a priori error bounds (6.53)–(6.54) are independent of the time step and simplify to
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Proof. As in Corollary 6.7, the result can be shown by substitution of the appropriate assumptions (i.e., k|α�| = |α�
0| for the 

Galerkin ROM, k|ᾱ�| = |ᾱ�
0| for the LSPG ROM) into inequalities (6.53) and (6.54). �

Remark 6.14 (Optimality in a priori error bounds). Because the argument of f in the a priori error bounds corresponds to the 
full-order-model solution, it is not possible to relate such quantities to ROM residuals as was done in the case of a posteriori
error bounds in Lemma 6.2. As such, it is not possible to associate the oblique projection of the LSPG ROM with minimizing 
any component of the a priori error bounds, as was shown for a posteriori error bounds in Corollary 6.3. However, it is 
possible to associate Galerkin projection with minimizing terms in the a priori error bounds, i.e., the following optimality 
result holds under the conditions of Corollary 6.12:∥∥δxn
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This is analogous to inequality (6.47) for a posteriori error bounds, where

ῡ := (k + 1)
∣∣βmax
∣∣�t

(
k|α�|
|α�

0|

)n exp
(

tnκε−1
(|β�|/|α�| + |β�

0 |/|α�
0|
))− 1

(k|α�| − |α�
0|) + (k|β�| + |β�

0 |)κ�t
.

6.2. Backward Euler

In practice, error bounds for a specific time integrator can be derived by substituting the appropriate values of αm
� and 

βm
� into the appropriate error bounds; doing so can lend additional insight into the error bound. We now perform this 

exercise for the backward Euler scheme—which is a single-step method that can be characterized by Eq. (2.2) with k = 1, 
α0 = 1, α1 = −1, β0 = 1, and β1 = 0—and selected bounds.
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We first note that the backward Euler scheme satisfies βn
j = 0, j ≥ 1 in Corollary 6.4. Thus, that result provides conditions 

under which the LSPG ROM has a lower local a posteriori error bound than the Galerkin ROM. Next, we specialize the global 
a posteriori error bounds in Theorem 6.5 to the case of the backward Euler scheme.

Corollary 6.15 (A posteriori error bounds: backward Euler). Under the assumptions of Theorem 6.1, for the backward Euler scheme we 
obtain

∥∥δxn
G

∥∥
2 ≤ �t

n−1∑
j=0

1

(h) j+1

∥∥∥∥(I −V
)

f
(

x0 + �x̂n− j
G

)∥∥∥∥
2

(6.58)

∥∥δxn
P

∥∥
2 ≤ �t

n−1∑
j=0

1

(h) j+1

∥∥∥∥(I − P
n− j
)

f
(

x0 + �x̂n− j
P

)∥∥∥∥
2
, (6.59)

where h := 1 − κ�t. Note that the time-step condition corresponds to �t < 1/κ in this case.

Proof. Because it is a single-step method, the linear multistep coefficients do not vary between time instances; as a result, 
the constants appearing in Theorem 6.5 are also time-step independent and are h = 1 − κ�t , ε0 = �t/h, ε1 = 0, γ0 =
(κ�t + 1)/h, and γ1 = 1/h. Substituting these values into error bound (6.26) and noting that

A( j) =
{

{(1, . . . ,1) ∈R
j} j > 0

∅ otherwise,

yields

∥∥δxn
P

∥∥
2 ≤ �t

h

n−1∑
j=0

[
1{0}( j) + (1/h) j1N(n−1)( j)

]
︸ ︷︷ ︸

(1/h) j

∥∥∥∥(I − P
n− j
)

f
(

x0 + �x̂n− j
P

)∥∥∥∥
2
, (6.60)

which simplifies to bound (6.59). Derivation of bound (6.58) is identical and is thus omitted. �
We now specialize the results of the time-step-independent global a priori error bounds in Corollary 6.13 to the backward 

Euler scheme.

Corollary 6.16 (Time-step-independent global a priori error bounds: backward Euler). Under the assumptions of Corollary 6.13—which 
can be satisfied by backward Euler as k|α�| = |α�

0| for this scheme—we obtain the following for the backward Euler scheme:

∥∥δxn
G

∥∥
2 ≤ 2

exp(tnκε−1) − 1

κ
max
j∈N(n)

∥∥∥∥(I −V
)

f
(

x0 + x j
�

)∥∥∥∥
2

(6.61)

∥∥δxn
P

∥∥
2 ≤ 2

exp(tnκε̄−1‖P�
0‖2) − 1

‖P�
0‖2κ

max
j∈N(n)

∥∥∥∥(I − P
j
)

f
(

x0 + x j
�

)∥∥∥∥
2
. (6.62)

Note that the time step conditions correspond to �t ≤ (1 − ε)/κ for the Galerkin ROM and �t ≤ (1 − ε̄)/(κ‖P�
0‖2) for the LSPG ROM 

in this case.

Proof. For backward Euler, k = |α�| = |α�
0| = |β�

0 | = 1 and �̄�
ε = |β�| = 0. Substituting these quantities into bounds (6.55) and 

(6.56) produces the desired result. �
We now derive a result that highlights the (surprising) role the time step �t plays in the LSPG error bound. As will be 

shown in the numerical experiments in Section 7, this theoretical results can have an important effect on the performance 
of the LSPG ROM in practice.

Corollary 6.17. If x̄ solves an auxiliary problem that computes the full-space solution increment centered on the LSPG ROM trajectory

x̄ j = �t f
(

x0 + x̄ j
)

+ �x̂ j−1
P , j ∈N(n), (6.63)

then the following holds:



716 K. Carlberg et al. / Journal of Computational Physics 330 (2017) 693–734
∥∥δxn
P

∥∥
2 ≤ (1 + κ�t)

n−1∑
j=0

μn− j

(h) j+1
(6.64)

= �t(1 + κ�t)
n−1∑
j=0

μ̄n− j

(h) j+1
‖ f (x̄n− j)‖2. (6.65)

Here, μ j :=
∥∥∥��x̂ j

P − �x̄ j
∥∥∥

2
denotes the difference in solution increments at time instance j, where �x̂ j

P := x̂ j
P − x̂ j−1

P and �x̄ j :=
x̄ j − �x̂ j−1

P . We denote the relative solution increment at time instance j by μ̄ j := μ j/‖�x̄ j‖2 .

Proof. Eq. (6.59) in conjunction with (6.17) (with 
∣∣βn

0

∣∣= 1 and the appropriate form of the discrete residual for backward 
Euler) implies

∥∥δxn
P

∥∥
2 ≤

n−1∑
j=0

1

(h) j+1

∥∥∥∥��x̂n− j
P − �t f

(
x0 + �x̂n− j

P

)∥∥∥∥
2
. (6.66)

We can also write the auxiliary equation (6.63) as �x̄ j = �t f
(

x̄ j
)

, j ∈N(n), which allows us to rewrite bound (6.66) as

∥∥δxn
P

∥∥
2 ≤

n−1∑
j=0

1

(h) j+1
·
∥∥∥∥(��x̂n− j

P − �x̄n− j
)

− �t

(
f
(

x0 + ��x̂n− j
P + �x̂n− j−1

P

)
− f
(

x0 + �x̄n− j + �x̂n− j−1
P

))∥∥∥∥
2
.

Lipschitz continuity of f leads to the bound (6.64). To obtain Eq. (6.65), we multiply and divide by ‖�x̄n− j‖2 for each term 
in the summation and use �x̄n− j = �t f

(
x̄n− j
)

. �
Corollary 6.17 is useful in that it expresses the LSPG ROM error in terms of the (time-local) single-step errors incurred 

by projection along the LSPG ROM trajectory. In addition, this result highlights the critical role of the time step �t in the 
performance of the LSPG ROM; the following remark provides this discussion.

Remark 6.18. The time step �t in the error bound (6.65) for the LSPG ROM solution plays an important role. In particular, 
decreasing the time step produces both beneficial effects (bound decrease) and deleterious effects (bound increase), which 
we denote by ‘+’ and ‘−’, respectively as follows:

+ The time-discretization error decreases (this does not appear in the time-discrete error analysis above).
− The number of overall time instances n increases, so there are more terms in the summation.
+ The terms �t(1 + κ�t) and 1/(h) j+1 decrease.
? The term μ̄n− j may increase or decrease, depending on the spectral content of the basis �.

We now discuss this final ambiguous effect. The term μ̄n can be interpreted as the relative error in solution increment over 
[(n − 1)�t,n�t]. Clearly, the ability of the LSPG ROM to make μ̄n small depends on the spectral content of the basis �: if 
the basis only captures modes that evolve over long time scales, then μ̄n will be large (i.e., close to one), as the basis does 
not contain the ‘fast evolving’ solution components that change over a single time step. This suggests that the time step 
should be ‘matched’ to the spectral content of the reduced basis �. In Section 7.5 of the experiments, we explore this issue 
numerically, and demonstrate that the error bound is minimized for an intermediate value of the time step �t .

We note that the above arguments do not hold for the Galerkin ROM, which is simply an ODE that does not depend 
on the time step. Instead, decreasing the time step should increase accuracy, as it has the effect of reducing the time-
discretization error.

6.3. Runge–Kutta schemes

We now derive Runge–Kutta error bounds for the Galerkin ROM (3.10) and the LSPG ROM (4.7). For notational simplicity, 
we define f n

i : ξ �→ f (ξ , tn−1 + ci�t), i ∈ N(s), n ∈ N(T /�t). Rather than present the full collection of results as was done 
for linear multistep schemes in Section 6.1, for compactness we instead focus only on the most important results for 
Runge–Kutta schemes: global a posteriori and a priori error bounds, as well as time-step-independent a priori error bounds.

We rewrite Eqs. (2.5), (3.9), and (4.7) as



K. Carlberg et al. / Journal of Computational Physics 330 (2017) 693–734 717
wn
�,i = f n

i

(
x0 + xn−1

� + �t
s∑

j=1

aij wn
�, j

)
, i ∈N(s) (6.67)

ŵn
G,i = �T f n

i

(
x0 + �x̂n−1

G + �t
s∑

j=1

aij�ŵn
G, j

)
, i ∈N(s) (6.68)

ŵn
P ,i =
(
(�n

ii)
T �
)−1

(�n
ii)

T f n
i

(
x0 + �x̂n−1

P + �t
s∑

j=1

aij�ŵn
P , j

)

−
(
(�n

ii)
T �
)−1 s∑

e=1,e �=i

(�n
ie)

T

(
�ŵn

P ,e − f n
e

(
x0 + �x̂n−1

P + �t
s∑

j=1

aej�ŵn
P , j

))
, i ∈N(s) (6.69)

and set x0
� = x0

G = x0
P = 0.

6.3.1. A posteriori error bounds
We first derive a posteriori error bounds.

Theorem 6.19 (Global a posteriori error bounds: Runge–Kutta schemes). If (A1) holds and �t is such that

(a) the matrix D ∈R
s×s with entries dij := δi j − κ�t|aij | is invertible, and

(b) for every x, y ≥ 0, if Dx ≤ y then x ≤ D−1 y,

then

‖δxn
G‖2 ≤ �t

n−1∑
�=0

(
1 + κ�t

s∑
k=1

|bk|
s∑

i=1

[D−1]ki

)�

×
( s∑

k=1

|bk|
s∑

i=1

[D−1]ki

∥∥∥∥(I −V) f n−�
i

(
x0 + �x̂n−�−1

G + �t
s∑

j=1

aij�ŵn−�
G, j

)∥∥∥∥
2

) (6.70)

and

‖δxn
P ‖2 ≤ �t

n−1∑
�=0

(
1 + κ�t

s∑
k=1

|bk|
s∑

i=1

[D−1]ki

)�

×
⎛
⎝ s∑

k=1

|bk|
s∑

i=1

[D−1]ki

∥∥∥∥(I − P
n−�
i ) f n−�

i

(
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P + �t
s∑

j=1

aij�ŵn−�
P , j
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2

+
s∑

k=1

∣∣bk
∣∣ s∑

i=1

[D−1]ki
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(
(�n−�

ii )T �
)−1 s∑

e=1,e �=i

(�n−�
ie )T

(
�ŵn−�

P ,e − f n−�
e

(
x0 + �x̂n−�−1

P

+�t
s∑

j=1

aej�ŵn−�
P , j

))∥∥∥∥∥
2

⎞
⎠,

(6.71)

where Pn
i := �

(
(�n

ii)
T �
)−1

(�n
ii)

T . Here, inequalities applied to vectors hold entrywise.

Proof. Galerkin ROM. First we will show bound (6.70). Subtracting Eq. (6.68) from Eq. (6.67) and applying the triangle 
inequality yields

‖δwn
G,i‖2 ≤

∥∥∥∥ f n
i

(
x0 + xn−1

� + �t
s∑

j=1

aij wn
�, j

)
−V f n

i

(
x0 + �x̂n−1

G + �t
s∑

j=1

aij�ŵn
G, j

)∥∥∥∥
2
, i ∈N(s),

where δwn
G,i := wn

�,i −�ŵn
G,i . Adding and subtracting f n

i

(
x0 +�x̂n−1

G +�t
∑s

j=1 aij�ŵn
G, j

)
and invoking assumption (A1), 

we deduce
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‖δwn
G,i‖2 − κ�t

s∑
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G, j
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2
+ κ‖δxn−1

G ‖2, i ∈N(s).

Selecting �t small enough such that (a) and (b) hold yields

‖δwn
G,k‖2 ≤

s∑
i=1

[D−1]ki

∥∥∥∥(I −V) f n
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2
+ κ‖δxn−1

G ‖2

s∑
i=1

[D−1]ki, (6.72)

where [·]i j denotes entry (i, j) of the argument. From explicit state updates (2.7) and (3.11), we obtain

‖δxn
G‖2 ≤ ‖δxn−1

G ‖2 + �t
s∑

k=1
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Using upper bound (6.72) yields
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G, j

)∥∥∥∥
2
.

Finally, an induction argument produces the desired result (6.70).

LSPG ROM. We now prove bound (6.71). Subtracting (6.69) from (6.67) and applying the triangle inequality yields
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Adding and subtracting f n
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)
and invoking assumption (A1), for i ∈N(s) we deduce
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Again selecting �t small enough such that (a) and (b) hold yields
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. (6.73)

The explicit state updates from (2.7) and (3.11) and the bound (6.73) yield
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.

An induction argument yields the bound (6.71). �
As with linear multistep schemes, the error bound for the Galerkin ROM in (6.70) depends on the orthogonal projection 

error of f n
i onto Ran (�), while the LSPG ROM error bound depends on an oblique projection; however, because the oblique 

projector depends on the LSPG ROM solution, this bound can be smaller than the Galerkin bound (as was demonstrated in 
Corollary 6.4—note that backward Euler is also a Runge–Kutta scheme). Further, notice that the complex ‘path traversing’ 
that appears in the linear multistep error bounds is not present for Runge–Kutta schemes; this is a consequence of the fact 
that previous time instances only influence the error at the current time step through induction for Runge–Kutta schemes. 
In addition, note that the LSPG ROM error bound is more complex than the Galerkin bound; the final line in bound (6.71)
is a consequence of the test-basis coupling (4.8) for general implicit Runge–Kutta schemes. Finally, we point out that both 
bounds grow exponentially in time due to the amplification factor. We now present a simpler version of this error bound 
for explicit Runge–Kutta and DIRK schemes.

Corollary 6.20 (Global a posteriori LSPG ROM error bound: explicit Runge–Kutta and DIRK). Under the assumptions of Theorem 6.19
for explicit RK (θ = 1) and DIRK (θ = 0) schemes, we have
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⎠. (6.74)

Proof. For explicit and diagonally implicit Runge–Kutta schemes (4.12), we have �n
i j = 0 when i �= j. The proof is then an 

immediate consequence of (6.71). �
Note that the LSPG error bound (6.74) resembles the Galerkin error bound (6.70) much more closely than the previous 

LSPG bound (6.71), as explicit Runge–Kutta and DIRK schemes remove the coupling of the test basis across stages.

6.3.2. A priori error bounds
We now state the a priori versions of the Galerkin Runge–Kutta schemes (6.70) and the LSPG Runge–Kutta schemes 

(6.71).

Corollary 6.21 (Global a priori error bounds: Runge–Kutta schemes). If (A1) holds and �t is such that

(a) the matrices D ∈R
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) (6.75)

and
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(6.76)

where we have used the convention that the empty product is equal to one.

Proof. The proof of (6.75) follows the Galerkin-ROM derivation in Theorem 6.19, wherein the quantity V f n
i

(
x0 + xn−1

� +

�t
∑s

j=1 aij wn
�, j

)
is added and subtracted rather than f n

i

(
x0 + �x̂n−1

G + �t
∑s

j=1 aij�ŵn
G, j

)
and ‖V‖2 = 1 is used. On the 

other hand, (6.76) follows the LSPG-ROM derivation by adding and subtracting Pn
i f n

i

(
x0 + xn−1

� + �t
∑s

j=1 aij wn
�, j

)
instead 

of f n
i

(
x0 + �x̂n−1

P + �t
∑s

j=1 aij�ŵn
P , j

)
. �

Similarly to Corollary 6.16, we now derive a time-step-independent variant of the error bound (6.75). A similar result 
can be shown for the LSPG bound (6.76); however, we omit this result for simplicity and instead will provide (more readily 
interpretable) a priori LSPG ROM error bounds for explicit Runge–Kutta and DIRK schemes in Corollary 6.24.

Corollary 6.22 (Time-step-independent global a priori Galerkin ROM error bound: RK schemes). Under the assumptions of Corol-
lary 6.21, assume additionally �t ≤ (1 − ω)/(κa�) with a� := ‖[|aij |]i j‖2 and 0 < ω < 1. Then,

‖δxn
G‖2 ≤

(
exp(tnκω−1b�s3/2) − 1

κ

)(
max

�∈N0(n−1)
i∈N(s)

∥∥∥∥(I −V) f n−�
i

(
x0 + xn−�−1

� + �t
s∑

j=1

aij wn−�
�, j

)∥∥∥∥
2

)
, (6.77)

where b� := maxi∈N(s) |bi |.

Proof. As in Corollary 6.16, by using an upper bound for the right hand side in (6.75) we obtain

‖δxn
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2
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(6.78)

We now derive a bound for the term 
s∑

k=1
|bk| 

s∑
i=1

[D−1]ki as

s∑
k=1

|bk|
s∑

i=1

[D−1]ki ≤ b�

s∑
k=1

s∑
i=1

[D−1]ki ≤ b�

s∑
k=1

s∑
i=1

|[D−1]ki | ≤ b�s‖D−1‖F ≤ b�s3/2‖D−1‖2

≤ b�s3/2

σmin(I) − σmax(κ�t[|aij|]i j)
= b�s3/2

1 − κ�ta�
,

(6.79)

where we have used the vector-norm equivalence relation ‖x‖1 ≤ √
N‖x‖2 with x ∈ R

N , the matrix-norm equivalence re-
lation ‖A‖F ≤ √

N‖A‖2 with A ∈ R
N×N , the relation ‖A−1‖2 = 1/σmin(A), σmin(A + B) ≥ σmin(A) − σmax(B) = σmin(A) −

‖B‖2 (with A = I and B = −κ�t[|aij |]i j), and the assumption �t ≤ (1 − ω)/(κa�).
We can now compute an upper bound on the constant in inequality (6.78) as
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=

(
1 + κ�t(b�s3/2 − a�)

)n

(1 − κ�ta�)−n − 1

κ
. (6.81)

Then, setting tn = n�t we obtain

(
1 + κ�t

(
b�s3/2 − a�

))n

(1 − κ�ta�)−n ≤ exp(tnκω−1b�s3/2). (6.82)

As in Theorem 6.1, we have used the relation (1 + x)n ≤ exp(nx), and the result (with x = 1 + κ�t

(
b�s3/2 − a�

)
and 

y = 1 − κ�ta�) that states if x ≥ y, then (x − y)/y ≤ ω−1(x − y) if and only if y ≥ ω > 0. Finally, substituting (6.82) in 
(6.81) and combining the resulting expression with (6.78) yields the desired result. �

As with linear multistep schemes, the rightmost term in the Galerkin a priori bound will always be smaller than that for 
the LSPG bound, as the former associates with an orthogonal projection error of a fixed vector. In addition, the LSPG bound 
depends on the LSPG ROM solution; while this dependence could be removed, the bound in its current form facilitates 
comparison with the Galerkin bound. We again notice the complex structure of the estimator in (6.76) compared to (6.75). 
To better understand the behavior the LSPG estimator in (6.76) we consider two subcases: explicit Runge–Kutta and DIRK 
schemes.

Corollary 6.23 (Global a priori LSPG ROM error bounds: explicit Runge–Kutta and DIRK). Under the assumptions of Corollary 6.21 for 
explicit RK (θ = 1) and DIRK (θ = 0) schemes, we have
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(6.83)

Proof. For explicit and diagonally implicit Runge–Kutta schemes (4.12), we have �n
i j = 0 when i �= j. The proof is then an 

immediate consequence of (6.76). �
Owing to the fact that the explicit Runge–Kutta and DIRK schemes remove the coupling of the basis, we again notice 

that the LSPG error bound (6.83) resembles the Galerkin ROM error bound (6.75).

Corollary 6.24 (Time-step-independent global a priori LSPG ROM error bound: explicit RK and DIRK). Under the assumptions 
of Corollary 6.21 for explicit RK (θ = 1) and DIRK (θ = 0) schemes, assume additionally �t ≤ (1 − ω̄)/(κā�) with ā� :=
min�∈N0(n−1) ‖[|aij|‖P�

i ‖2]i j‖2 and 0 < ω̄ < 1. Then,

‖δxn
P ‖2 ≤

(
exp(tnκω̄−1b�s3/2) − 1

κ

)(
max

�∈N0(n−1)
i∈N(s)

∥∥∥∥(I − P
n−�
i ) f n−�

i

(
x0 + xn−�−1

� + �t
i−θ∑
j=1

aij wn−�
�, j

)∥∥∥∥
2

)
. (6.84)

Proof. The proof follows closely that of Corollary 6.22. We begin by deriving an upper bound for the right hand side in 
(6.75) as
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Analogously to the derivation in Eq. (6.79), we bound the term 
∑s

k=1 |bk| ∑s
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Finally, we compute an upper bound on the constant in inequality (6.85) as
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As this result is identical to upper bound (6.80) in the proof of Corollary 6.22 with ā� replacing a� , we obtain the desired 
result by applying the remaining steps as Corollary 6.22. �
7. Numerical experiments

This section compares the performance of Galerkin and LSPG ROMs on a computational-fluid-dynamics (CFD) application 
using a basis constructed by proper orthogonal decomposition. These experiments highlight the importance of the previ-
ous analyses, in particular the limiting equivalence of Galerkin and LSPG ROMs (Theorem 5.3), superior accuracy of the 
LSPG ROM compared with the Galerkin ROM (Corollary 6.4), and performance improvement of the LSPG ROM when an 
intermediate time step is selected (Corollary 6.17 and Remark 6.18).

Note that these experiments could be carried out on any dynamical system yielding a system of nonlinear ODEs (2.1); we 
have selected compressible turbulent fluid dynamics due to both its wide interest and challenging nature: limited progress 
has been made to date on developing robust, accurate ROMs for such problems. The numerical experiments highlight this 
fact, as standard Galerkin ROMs generate unstable responses in all cases.

7.1. Problem description

The Galerkin and LSPG ROMs are implemented in AERO-F [34,30], a massively parallel compressible-flow solver. AERO-F 
solves the steady or unsteady compressible Navier–Stokes equations with various closure models available for turbulent flow, 
and employs a second-order node-centered finite-volume scheme. For model-reduction algorithms, all linear least-squares 
problems and singular value decompositions are computed in parallel using the ScaLAPACK library [15].

The full-order model corresponds to an unsteady Navier–Stokes simulation of a two-dimensional open cavity with a 
length-to-depth ratio of 4.5 using AERO-F’s DES turbulence model (based on the Spalart–Allmaras one-equation model [54]) 
and a wall-function boundary condition applied on solid surface boundaries. The fluid domain is discretized by a mesh 
with 192,816 nodes and 573,840 tetrahedra (Fig. 2). The two-dimensional geometry is discretized in three dimensions by 
considering a slab of thin, but finite thickness, in the z-direction; the resulting grid is one element wide and is created 
by extruding a distance that is 1% of the cavity length. The viscosity is assumed to be constant, and the Reynolds number 
based on cavity length is 2.97 × 106, while the free-stream Mach number is 0.6. Due to the turbulence model and three-
dimensional domain, the number of conservation equations per node is 6, and therefore the dimension of the CFD model 
is N = 1,156,896. Roe’s scheme is employed to discretize the convective fluxes, and a linear variation of the solution is 
assumed within each control volume, which leads to a second-order space-accurate scheme on general unstructured, multi-
dimensional meshes; however, we employ an extended stencil that gives fifth-order formal order of accuracy (with uniform 
mesh spacing) on inviscid, one-dimensional problems. The viscous flux is discretized using a centered Galerkin scheme.

Flow simulations are performed within a time interval t ∈ [0, T ] with T = 12.5 time units. We employ the second-order 
accurate implicit three-point backward differentiation formula, which is a linear multistep scheme characterized by k = 2, 
α0 = 1, α1 = −4/3, α2 = 1/3, β0 = 2/3, β1 = β2 = 0, for time integration; future work will perform numerical experiments 
with Runge–Kutta schemes. The O�E (2.3) arising at each time step is solved by a Newton–Krylov method, where GMRES is 
employed as the iterative linear solver with a restrictive additive Schwarz preconditioner (with no fill in) and the previous 
50 Krylov vectors are employed for orthogonalization. Convergence is declared when the residual norm is reduced to a 
factor of 10−3 of its starting value. All flow computations are performed in a non-dimensional setting.
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Fig. 2. Computational mesh: x–y plane cut.

The initial condition x0 is provided by first computing a steady-state solution, and using that solution as an initial 
guess for an unsteady ‘transient’ simulation (which captures the initial transient before the flow reaches a quasi-periodic 
state) of 7.5 time units. The state at the end of the unsteady transient simulation is then used as the initial condition 
for the subsequent simulations. The steady-state calculation is characterized by the same parameters as above, except that 
it employs local time stepping with a maximum CFL number of 100, it uses the first-order implicit backward Euler time 
integration scheme, it assumes a linear variation of the solution within each control volume, it employs a Spalart–Allmaras 
turbulence model, and it employs only one Newton iteration per (pseudo) time step.

The output of interest is the pressure at location (0.0001, −0.0508, 0.0025), which is shown in the bottom row of Fig. 4. 
All errors are reported as the �2 relative error in this quantity, i.e.,

ε(p, p�) =
√∑T /�t�

n=1

(
P�(p)(n�t�) − p�(n�t�)

)2√∑T /�t
n=1 p�(n�t�)2

,

where p : N(T /�t) → R is the pressure for the model of interest, p� : N(T /�t�) → R is this pressure response of the 
designated ‘truth’ model (typically the full-order model), and P� is a linear interpolation of the pressure response onto the 
grid based on the truth-model time step �t� .

All computations are performed in double-precision arithmetic on a parallel Linux cluster4 using 48 cores across 6 nodes.

7.2. Time-step verification

Because this paper considers the time step to be an important parameter in model reduction, we first perform a time-
step verification study to ensure we employ an appropriate ‘nominal’ time step. Fig. 3 reports these results using a time-step 
refinement factor of two. A time step of �t� = 0.0015 time units yields observed convergence rates in both the instanta-
neous drag force on the lower wall and instantaneous pressure at t = T that are close to the asymptotic rate of convergence 
(2.0) of three-point BDF2 scheme. Further, this value also leads to sub-2% errors in both quantities, which we deem to be 
sufficient for this set of experiments.

Fig. 4 shows several instantaneous snapshots of the vorticity field and corresponding pressure field generated by the 
high-fidelity CFD model. The flow within the cavity is quasi-periodic; during one cycle, vorticity is shed from the leading 
edge of the cavity, convects downstream, and impinges on the aft edge of the cavity. Upon impingement, an acoustic 
disturbance is generated which propagates upstream and scatters on the leading edge of the cavity, generating a new 
vortical disturbance to initiate the next oscillation cycle. The pressure fields in the bottom row of Fig. 4 reveal regions of 
low pressure (blue contours) associated with vortices, as well as acoustic disturbances both within the cavity and radiating 
outside the cavity. This complex flow is governed by the interactions of several nonlinear processes, including roll-up of the 
shear layer vortices, impingement of the vortices on the aft wall resulting in sound generation, propagation of nonlinear 
acoustic waves, and interaction of these waves with the shear layer vorticity.

4 The cluster contains 8-core compute nodes that each contains a 2.93 GHz dual socket/quad core Nehalem X5570 processor with 12 GB of memory. The 
interconnect is a 3D torus InfiniBand.
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Fig. 3. Time-step verification study. Note that the approximated convergence rates are close to the asymptotic value of 2.0 for the BDF2 scheme. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Instantaneous CFD vorticity field (top) and pressure field (bottom) during one oscillation cycle. The dot on the forward wall of the cavity indicates 

the location of the pressure signal output.
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Fig. 5. Visualization of the energy component of the POD modes.

Fig. 6. Time-step verification study for Galerkin and LSPG reduced-order models for p = 368 and 0 ≤ t ≤ 0.55. While the approximated convergence rate for 
the Galerkin reduced-order model is close to the asymptotic value of 2.0 for the BDF2 scheme, this is not observed for the LSPG reduced-order model. Note 
that the error for each ROM is computed with respect its response for finest Richardson extrapolation, and a dashed line indicates the snapshot-collection 
time step �t� = 0.0015. See Fig. 7(c–d) for the associated time-dependent responses.

7.3. Reduced-order models

To construct both the Galerkin and LSPG ROMs, we employ the proper orthogonal decomposition (POD) technique; we 
employ a constant weighting matrix A = I for the LSPG ROM. To construct the POD basis, we set � ← �

(
X , ν
)
, where � is 

computed via Algorithm 1 of the appendix with snapshots consisting of the initial-condition-centered full-order model states 
X = {x�(k�t�) − x0}8334

k=1 , where x� denotes the FOM response computed for a time step of �t�= 0.0015. Three values of the 
energy criterion ν ∈ [0, 1] are used during the experiments: ν = 1–10−4 (p = 204), ν = 1–10−5 (p = 368), and ν = 1–10−6

(p = 564). Fig. 5 shows a selection of the energy component of the computed POD modes. Note that as the mode number 
increases, the modes capture finer spatial-scale behavior, which we expect to be associated with finer time-scale behavior; 
this will be verified in Section 7.5.1.

We first repeat the time-step verification study, but we do so for the reduced-order models (again using the BDF2 
scheme) in the time interval 0 ≤ t ≤ 0.55, as all Galerkin ROMs remain stable in this time interval. Fig. 6 reports these 
results. First, we note that the Galerkin ROM converges an approximated rate of 2.0, which is what we expect given that 
the Galerkin ROM simply associates with a time-step-independent ODE (3.2). However, the LSPG ROM does not exhibit this 
behavior; in fact the error convergence is not even monotonic. This is likely due to the fact that the method does not 
associate with a time-step-independent ODE.

We next perform simulations for both reduced-order models for all tested basis dimensions and time steps; Fig. 7 reports 
the time-dependent responses. When a response stops before the end of the time interval, this indicates that a negative 
pressure was encountered, which causes AERO-F to exit the simulation. We interpret this phenomenon as a non-physical 
instability.

First, note that the Galerkin ROMs become unstable (i.e., generate a negative pressure) for all time steps and all basis 
dimensions. This is consistent with previously reported results [20,21,19,18] that indicate Galerkin projection almost always 
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Fig. 7. Responses generated by Galerkin and LSPG ROMs for different basis sizes p and time steps �t .

leads to inaccurate responses for compressible fluid-dynamics problems. In contrast, the LSPG ROM results in many sta-
ble, accurate responses for all basis dimensions. Further, LSPG responses exhibit a clear dependence on the time step �t . 
Subsequent sections provide a deeper analysis of this dependence.

7.4. Limiting case: comparison

We next compare the responses of the Galerkin and LSPG ROMs for small time windows (when the Galerkin re-
sponses remain stable) and small time steps. Fig. 8 reports ε(pdiscrete opt., pGal� )—which is the difference between the 
pressure responses generated by the LSPG ROM with different time steps and the Galerkin ROM with a fixed time step 
�t = 1.875 × 10−4 (the smallest tested time step)—for a time window 0 ≤ t ≤ 1.1. These responses support an important 
conclusion (see Theorem 5.3): the Galerkin and LSPG ROMs are equal in the limit of �t → 0 for A = 1/

√
α0 I , which is what 



K. Carlberg et al. / Journal of Computational Physics 330 (2017) 693–734 727
Fig. 8. Difference ε(pLSPG, pGal� ) between the pressure responses generated by the LSPG ROM with different time steps and the Galerkin ROM with a fixed 
time step �t = 1.875 × 10−4 in 0 ≤ t ≤ 1.1. This demonstrates convergence of the LSPG ROM to Galerkin as �t → 0.

we employ for the LSPG ROM (note that α0 = 1 for this time integrator).5 This has significant consequences for the LSPG 
ROM, as decreasing the time step leads to the same unstable response as Galerkin; larger time steps are needed to ensure 
the LSPG ROM is stable for the entire time interval.

Fig. 9 reports ε(pdiscrete opt., pFOM� ) and ε(pGal., pFOM� )—which are the differences between the two ROM-generated pres-
sure responses and the full-order model pressure response for �t = 1.875 × 10−4—as a function of the time step for all 
three basis dimensions and three time intervals. These results highlight a critical observation: the LSPG ROM is more accu-
rate for an intermediate time step. This not only supports the result of Corollary 6.17, but provides an interesting insight: 
taking a larger time step not only leads to better speedups (i.e., the end of the time interval is reached in fewer time steps), 
but it also decreases the error, sometimes significantly. This is further explored in the next section.

7.5. Time-step selection

Recall from Corollary 6.17 and Remark 6.18 that decreasing the time step �t has a non-obvious effect on the error bound 
for the LSPG ROM. We now assess these effects for the current problem.

7.5.1. Spectral content of POD basis
In our interpretation of the error bound (6.65) for the LSPG ROM applied to the backward Euler scheme, we noted that 

the time step should be ‘matched’ to the spectral content of the trial basis �. This is of practical importance, as selecting 
an appropriate time step for the ROM should take into account the relevant temporal dynamics associated with the basis. 
For example, a time step may be too small if the basis has filtered out modes with a time scale matching that of the time 
step. If we assume that the basis � is computed via POD, then we would expect the vectors to be naturally ordered such 
that lower mode numbers are associated with lower temporal frequencies. Then, including additional modes has the effect 
of encoding information at higher frequencies. It follows that the time step should be decreased as additional modes are 
retained in construction of the ROM.

Here we investigate the validity of this assumption by examining the spectral content of the POD basis vectors for 
the current cavity-flow problem. We compute the time histories of the generalized coordinates by projecting the FOM 
solution onto the POD basis as x̂�(k�t�) := �T (x�(k�t�) − x0), k ∈ N(8334). We then compute power spectral densities of 
the generalized coordinates x̂�(t). Fig. 10(a) shows sample spectra, normalized by the total energy in each signal,6 for several 
of the POD modes. The figure shows that energy shifts to higher frequencies as the POD mode number increases, confirming 
our assumption for this example. This is further quantified by calculating a characteristic time-scale τ95 associated with each 
mode; we define this time scale as the inverse of the frequency below which 95% of the energy is captured for that mode. 
Fig. 10(b) plots this time scale versus the mode number, showing a clear trend of decreasing time scale with increasing 
mode number.

Thus, at least for the present application problem, we expect the optimal time step for the LSPG ROM to decrease as 
modes are added to the POD basis (this will be verified by Fig. 12). Note that systematic calibration could be performed 
to attempt to automate selection of the ROM time step as a function of basis dimension. While this would be of clear 
practical interest, we do not pursue it here, as optimal-timestep computation would be complicated in practice by nonlinear 
interactions arising from the dynamical system, as well as effects from the spatial-discretization error and POD truncation 
error.

5 Note that in the p = 564 case, it is not clear if the difference is converging to zero. This is likely due to the fact that the time steps are not sufficiently 
small to detect convergence to zero in this case. In fact, as the basis dimension p increases, the basis captures finer temporal behavior (as will be shown 
in Fig. 10) and so the time scale of the ROM response will be smaller; in turn, smaller time steps �t will be required to detect convergent behavior.

6 The energy in a time series within some frequency range is obtained by integrating the power spectral density over that range.
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Fig. 9. Galerkin errors ε(pGal., pFOM� ) and LSPG errors ε(pLSPG, pFOM� ) over different time intervals, time steps, and basis dimensions. For reference, a dashed 
line indicates the snapshot-collection time step �t� = 0.0015.

7.5.2. Error bound behavior
Having verified that higher POD mode numbers correspond to smaller wavelengths, we now numerically assess quan-

tities related to the error bound (6.65). First, Fig. 11(a) reports the dependence of the maximum relative projection error 
maxk μ̄k

�(�,�t) on the time step �t and the basis dimension, where

μ̄k
�(�,�t) := ‖(I − ��T )(x�(k�t) − x�((k − 1)�t))‖

‖x�(k�t) − x�((k − 1)�t)‖ .

Note that μ̄k
� is closely related to μ̄k from error bound (6.65), as they are equal if x0 + �x̂P (t) = x(t) and the LSPG ROM 

computes x̂k
P such that μ̄k is minimized.

These results confirm that adding basis vectors—which we know has the effect of encoding higher frequency content—
significantly reduces the projection error for small time steps �t , but has less of an effect on larger time steps, as retaining 
the first POD vectors already enables dynamics at that scale to be captured.

Next, Fig. 11(b) plots the error bound (6.65) for a value of κ = 1 and with μ̄k = μ̄k
� . This highlights an important result: 

selecting an intermediate time step �t leads to the lowest error bound, regardless of the basis dimension. Even though this result 
corresponds to the backward Euler integrator, we expect a similar trend to hold for the present experiment, which uses the 
BDF2 scheme. The next section assesses the performance of the LSPG ROM, including its dependence on the time step.
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Fig. 10. Spectral content of the POD basis.

Fig. 11. Assessment of quantities appearing in error bound (6.65). This analysis suggests that an intermediate time step �t can reduce errors for the LSPG 
ROM.

7.6. LSPG ROM performance

We now compare the accuracy and walltime performance of the LSPG ROM as the dimension of the basis, time step, and 
time interval change. The most salient result from Fig. 12 is that choosing an intermediate time step leads to both better 
accuracy and faster simulation times. This shows that our theoretical analysis of the error bound performed in Section 7.5.2
leads to an actual observed performance improvement. For example, consider the p = 564 case over the time interval 
0 ≤ t ≤ 2.5. In this case, a time step of �t = 1.875 × 10−4 leads to a relative error of 0.0140 and a simulation time of 
289 h; increasing this value to �t = 1.5 × 10−3 reduces the relative error to 9.46 × 10−4 and the simulation time to 35.8 h, 
which constitutes roughly an order of magnitude improvement in both quantities. Again, this supports the theoretical results 
of Corollary 6.17 and highlights the critical importance of the time step for LSPG reduced-order models.

In addition, Fig. 12 shows that as the basis dimension increases, the optimal time step decreases; this was anticipated 
from the spectral analysis performed in Section 7.5.1. In addition, adding POD basis vectors does not improve accuracy 
for large time steps. We interpret this effect as follows: for larger time steps, the first few POD modes accurately capture 
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Fig. 12. Dependence of error and simulation time for the LSPG reduced-order model on the time step �t , basis dimension, and time interval.

‘coarse’ phenomena on the scale of the time step. Therefore, accuracy improvement is not achieved by adding modes that 
encode dynamics that evolve on a time scale finer than the time step itself.

Further, Fig. 12(g) highlights that as the basis dimension increases, the error generally decreases, which is an artifact of 
the monotonic decrease in the FOM O�E residual achieved by the LSPG ROM (Remark 4.1). Finally, the figure shows that as 
the time interval grows, the optimal time step generally increases.

7.7. GNAT: ROM with complexity reduction

In this section, we perform a similar study, but equip the LSPG ROM with complexity reduction in order to achieve 
computational savings. In particular, we employ the GNAT method [19–21], which solves Eq. (4.1) with A = (P�r)

+ P , 
where �r is a basis for the residual and P consisting of selected rows of the identity matrix.
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Fig. 13. Sample mesh (red) embedded within original mesh. The sample mesh is used to enable low-computational-footprint simulations with the GNAT 
reduced-order model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The problem is identical to that described in Section 7.1 except that we take T = 5.5 time units and employ a second-
order space-accurate dissipation scheme wherein a linear variation of the solution is assumed within each control volume.7

For this simulation, the full-order model consumes 5.0 hours on 48 cores across six compute nodes.
To construct the trial basis � and basis for the residual �r for the GNAT models, we again employ POD. In particular, we 

set � ← �
(
X , ν
)
, where � is computed via Algorithm 1 with snapshots consisting of the centered full-order model states 

X = {x�(k�t�) − x0}3668
k=1 . An energy criterion of ν = 1–10−5 (p = 179) is used during the experiments. For the residual, 

we employ �r ← �
(
Xr, νr

)
via Algorithm 1 with snapshots Xr = {rn(x0 + �ŵn(k)

), k ∈ N(K (n)), n ∈ N(2228)} and ŵn(k)

corresponding to the LSPG ROM solution at Gauss–Newton iteration k within time step n using a time step of �t = 6 ×10−3. 
Here, K (n) denotes the number of Newton iterations required for convergence of at time instance n. An energy criterion 
of νr = 1.0 is employed. In addition, the GNAT model sets the Jacobian basis equal to residual basis � J = �r and employs 
ns = 743 sample nodes that define P , which leads to 4458 rows in P as there are six conservation equations per node due 
to the turbulence model (see Ref. [21] for definitions).

The GNAT implementation in AERO-F is characterized by the sample-mesh concept [21]. Fig. 13 depicts the sample mesh 
for this problem, which was constructed using nc = 2228 working columns [21, Algorithm 3], and includes two layers of 
nodes around the sample nodes (to enable the residual to be computed at the sample nodes). It is characterized by 7,974 
total nodes (4.1% of the original mesh) and 17,070 total volumes (3.0% of the original mesh). Due to the small footprint of 
the sample mesh, the GNAT simulations are run using only 2 cores on a single compute node.

Fig. 14 reports the results obtained with the GNAT ROM using different time steps. Critically, note that the GNAT ROM 
also exhibits a ‘dip’ in the optimal time step, with a time step of 6.0 × 10−3 yielding the lowest error. In fact, increasing 
the time step from 1.5 × 10−3 to 6.0 × 10−3 decreases the error from 3.32% to 2.25% and also significantly increases the 
computational savings relative to the full-order model (as measured in core–hours) from 14.9 to 55.7. This highlights that 
the analysis is also relevant to ROMs equipped with complexity reduction.

7.8. Summary of experimental results

We now briefly summarize the main experimental results:

• Galerkin ROMs are unstable for long time intervals (Fig. 7).
• LSPG ROMs are only unstable for small time steps (Fig. 7).
• Galerkin and LSPG ROMs are equivalent as �t → 0 (Fig. 8).
• LSPG ROMs are more accurate than Galerkin ROMs over small time windows where Galerkin is stable (Fig. 9).
• LSPG ROMs are most accurate for an intermediate time step (Fig. 9).
• Adding POD modes has the effect of including higher-frequency response components (Fig. 10).
• The theoretical error bound for the LSPG ROM exhibits the same time step ‘dip’ as the experimentally observed error 

(Fig. 11).
• The optimal time step for the LSPG ROM decreases as modes are added to the POD basis (Fig. 12).

7 This is done to ensure the sample mesh requires two layers of neighboring nodes for each sample node.
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Fig. 14. Responses, errors ε(pGNAT, pFOM� ), and computational savings (as measured in core–hours) produced by the GNAT reduced-order model for different 
time steps �t .

• Adding modes to the POD basis has little effect on LSPG ROM accuracy for large time steps (Fig. 12).
• The optimal time step for the LSPG ROM tends to increase as the time interval increases (Fig. 12(g)).
• The GNAT ROM, which is discrete optimal and is equipped with complexity reduction, also produces minimal error for 

an intermediate time step (Fig. 14).

8. Conclusions

This work has performed a comparative theoretical and experimental analysis of Galerkin and LSPG reduced-order 
models for linear multistep schemes and Runge–Kutta schemes. We have demonstrated a number of new findings that 
have important practical implications, including conditions under which the LSPG ROM has a time-continuous repre-
sentation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two ap-
proaches.

Perhaps most surprisingly, we demonstrated that decreasing the time step does not necessarily decrease the error for the 
LSPG ROM. This phenomenon arose in both the theoretical analysis and in numerical experiments. In particular, our results 
suggest that the time step should be ‘matched’ to the spectral content of the reduced basis. In the experiments, we showed 
that increasing the time step to an intermediate value decreased both the error and the simulation time by an order of 
magnitude in certain cases. Alternatively, decreasing the time step cause the LSPG ROM to become unstable for longer time 
intervals. This highlights the critical importance of time-step selection for LSPG ROMs.
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Appendix A

Algorithm 1 reports the algorithm for computing a POD basis using normalized snapshots.

Input: Set of snapshots X ≡ {w i}nw
i=1 ⊂R

N , energy criterion ν ∈ [0, 1]
Output: �

(
X , ν
)

1: Compute thin singular value decomposition W = U�V T , where W ≡ [w1/‖w1‖ · · · wnw /‖wnw ‖].
2: Choose dimension of truncated basis p = ne(ν), where

ne(ν) = arg min
i∈V(ν)

i

V(ν) := {n ∈N(nw) |
n∑

i=1

σ 2
i /

nw∑
i=1

σ 2
i ≥ ν},

and � ≡ diag (σi).

3: �
(
X , ν
)= [u1 · · · up

]
, where U ≡

[
u1 · · · unw

]
.

Algorithm 1. Proper-orthogonal-decomposition basis computation (normalized snapshots).
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