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Abstract: Data-driven mathematical methods are increasingly important for charac-
terizing complex systems across the physical, engineering, and biological sciences.
These methods aim to discover and exploit a relatively small subset of the full high-
dimensional state space where low-dimensional models can be used to describe the
evolution of the system. Emerging dimensionality reduction methods, such as the dy-
namic mode decomposition (DMD) and its Koopman generalization, have garnered at-
tention due to the fact that they can (i) discover low-rank spatio-temporal patterns of
activity, (ii) embed the dynamics in the subspace in an equation-free manner (i. e.,
the governing equations are unknown), unlike Galerkin projection onto proper or-
thogonal decomposition modes, and (iii) provide approximations in terms of linear
dynamical systems, which are amenable to simple analysis techniques. The selec-
tion of observables (features) for the DMD/Koopman architecture can yield accurate
low-dimensional embeddings for nonlinear partial differential equations (PDEs)while
limiting computational costs. Indeed, a good choice of observables, including time
delay embeddings, can often linearize the nonlinear manifold by making the spatio-
temporal dynamics weakly nonlinear. In addition to DMD/Koopman decompositions,
coarse-grained models for spatio-temporal systems can also be discovered using the
sparse identification of nonlinear dynamics (SINDy) algorithm which allows one to
construct reduced-order models in low-dimensional embeddings. These methods can
be used in a nonintrusive, equation-free manner for improved computational perfor-
mance on parametric PDE systems.
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7.1 Introduction
Data-driven modeling of complex systems is of increasing importance in modern
scientific applications given the unprecedented rise of data collection on multi-
scale, spatio-temporal systems. Enabled by emerging sensor technologies and high-
performance computing platforms, the large-scale monitoring and collection of data
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on such systems has shifted our modeling paradigm by exploiting data-driven, ma-
chine learning approaches. Specifically, instead of positing empirical or approxi-
mate spatio-temporalmodels, typically characterized by partial differential equations
(PDEs), the low-dimensional features extracted from time snapshots of the data canbe
directly used to construct reduced-ordermodels (ROMs) for a variety of important tasks
such as state-space reconstruction and diagnostics, as well as future state prediction
and forecasting [14]. In this chapter, we present a diverse set of data-driven methods
that can be used to construct ROMs directly from data. The methods presented can
be used with traditional ROM architectures where the governing PDEs are known, or
they can be used to discover unknown spatio-temporal dynamics directly from the
data. Most of the methods are nonintrusive, minimizing the need for prohibitively
expensive high-performance simulations. This also allows for accurate, low-fidelity
models, enabling inexpensive Monte Carlo simulations. We present four methods for
enabling data-driven ROMs: The dynamic mode decomposition (DMD) and the asso-
ciated Koopman decomposition [78], the sparse identification of nonlinear dynamics
(SINDy) algorithm [25], and the Hankel alternative view of Koopman (HAVOK) algo-
rithm [22]. Each method can be used to advantage in a variety of situations, including
when the governing PDE equations are known, only partially known, or unknown.

Consider a governing system of nonlinear PDEs of a single spatial variable x,
which can be modeled as [14]

ut = L(x)u + N(u, x, t), (7.1)

where L(x) is a linear operator andN(⋅) prescribes the nonlinear terms in the evolution
dynamics. Both L(x) and N(⋅)may be unknown, or only partially known. As an exam-
ple, the Burgers equation, ut = uxx + νuux, has L = 𝜕2/𝜕x2 and N(u) = νuux. Associated
with (7.1) are a set of initial and boundary conditions on a domain x ∈ 𝒟. Historically,
a number of analytic solution techniques have been devised to study (7.1) provided the
right-hand side is known. Typically the aim of such methods is to reduce the PDE (7.1)
to a set of ordinary differential equations (ODEs). The standard PDE methods of sep-
aration of variables and similarity solutions are constructed for this express purpose.
Once in the formof anODE, a broader variety of analyticmethods canbe applied along
with a qualitative theory in the case of nonlinear behavior [61]. This again highlights
the role that asymptotics can play in characterizing behavior.

For the general form of (7.1) where the right-hand side is known, separation of
variables can often be used to yield a computational algorithm capable of producing
low-rank approximations. Since the spatial solutions are not known a priori, it is typi-
cal to assume a set of basis modes which can be used for the low-rank approximation.
Indeed, such assumptions on basis modes underly the critical ideas of the method of
eigenfunction expansions. This yields a separation of variables solution ansatz of the
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form

u(x, t) = Ψ(x)a(t) =
r
∑
k=1

ψk(x)ak(t), (7.2)

whereΨ(x) ∈ ℂn×r forma set of r orthonormal basismodes andx ∈ ℝn×1 represents the
spatial discretization of x in the governing PDE. The modal basis Ψ is often obtained
via proper orthogonal decomposition (POD) [60, 14, 129]. This separation of variables
solution approximates the true solution, provided r is large enough. A fundamental
assumption of reduced-order modeling is that there exists a low-rank truncation, or
subspace, that accurately characterizes the evolution of the spatio-temporal system.
More broadly, such approximations are baseduponmodalmethods for buildingROMs
as discussed in Chapters 1 and 4 of Volume 1 ofModel order reduction [12].

The orthogonality properties of the basis functions ψk(x), which are the columns
of Ψ, enable us to make use of (7.2). Inserting the expansion (7.2) into the governing
equations gives [14]

da
dt
= ΨTLΨa +ΨTN(Ψa). (7.3)

Thegiven formofN(⋅)determines themode-coupling that occurs between the various r
modes. Indeed, the hallmark feature of nonlinearity is the production ofmodalmixing
from (7.3). Equation (7.3) is the canonical ROM identified as a Galerkin projection of the
dynamics onto PODmodes. It can be evaluated given full knowledge of the right-hand
side of the governing PDE.

Equation (7.3) details how a low-rank subspace can be used to construct a
Galerkin-POD-ROMmodel as a proxy, or surrogate, model for the high-fidelity model.
In this reduction, the linear operatorΨTLΨ can be computed once to produce an r × r
matrix modeling the effects of the linear portion of the dynamics. What is more prob-
lematic is the evaluationof thenonlinear contributionΨTN(Ψa) in (7.3). Indeed, oneof
the primary challenges in producing the low-rank dynamical system is efficiently pro-
jecting the nonlinearity of the governing PDEs on the POD basis. This fact was recog-
nized early on in the ROM community, and methods such as gappy POD [50, 142, 150]
were proposed to more efficiently enable this hyperreduction task. More recently, the
empirical interpolation method (EIM) [11], the discrete EIM (DEIM) [37], and the QR
decomposition-based Q-DEIM [46], have provided a computationally efficient method
for discretely (sparsely) sampling and evaluating the nonlinearity. These widely used
hyperreduction methods ensure that the computational complexity of ROMs scale
favorably with the rank of the approximation, even for complex nonlinearities.

Numerical schemes based on the Galerkin projection (7.3) are commonly used to
perform simulations of the full governing system (7.1). Convergence to the true solution
can be accomplished by judicious choice of both the modal basis elementsΨ and the
total number of modes r. Interestingly, the separation of variables strategy, which is
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rooted in linear PDEs, works for nonlinear and nonconstant coefficient PDEs, provided
enoughmodal basis functions are chosen in order to capture the nonlinear modemix-
ing that occurs in (7.3). A good choice of modal basis elements allows for a smaller set
of rmodes to be chosen to achieve a desired accuracy. The PODmethod is designed to
specifically address the data-driven selection of a set of basis modes that are tailored
to the particular dynamics, geometry, and parameters.

Unfortunately, the Galerkin-POD projection of the dynamics (7.3) is often unsta-
ble [34], requiring modification to stabilize the time-stepping scheme [4]. Moreover,
the evaluation in (7.3) of the nonlinear termΨTN(Ψa) renders the ROM scheme intru-
sive, i. e., to compute the nonlinear contribution in the low-rank subspace requires an
expensive sampling of the high-fidelitymodel in order to build the low-rank subspace.
Instead, one can directly approximate the nonlinearity via DMD which directly com-
putes this contribution via nonintrusivemethods [2]. Thus there is no recourse to high-
fidelity and expensive computations to construct an approximation to the nonlinear
contribution. If latent variables are present, i. e., important portions of the state-space
have not been measured, then the Hankel alternative view of Koopman (HAVOK) al-
gorithm, which helps to discover a proxy for the latent variable space, can be used
instead of DMD. Finally, if the right-hand side is unknown, then the SINDy algorithm
can be used to discover a low-rank, nonlinearmodel characterizing the evolution. The
diversity of mathematical techniques highlights the emerging use of regression and
machine learning strategies that can help model complex, spatio-temporal systems.

7.2 Data-driven reductions

Numerical linear algebra plays a central role in scientific computing [135, 77, 24].
Specifically, methods that have historically improved the efficiency of solving Ax = b
have always been of critical importance for tractable computations, especially at
scale, where scale is a relative term associated with the limits of computing in a given
era. From QR decomposition to lower-upper factorization [135], matrix decomposi-
tions have been the primary methods to enable improved computational efficiency.
But perhaps the most important factorization technique is the singular value decom-
position (SVD) [77], which plays a key role in data analysis and computation, including
applications in reduced-order modeling through POD and DMD.

7.2.1 Singular value decomposition

The success of the SVD algorithm is largely due to the fact that by construction, it
extracts the dominant, correlated features from any given data matrix. This often al-
lows one to approximate the matrix with a principled low-rank approximation which
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is guaranteed to be the best approximation in an ℓ2-sense. This mathematical archi-
tecture is so powerful and universal that it has been invented and used extensively in
a wide range of fields [77]. Specifically, it is alternatively known as principal compo-
nent analysis (PCA) in statistics (where to be precise, each column or row is scaled to
have mean zero and unit variance), POD in the fluid dynamics community, empirical
mode decomposition in atmospheric sciences, theHotelling transform, empirical eigen-
functions, orKarhunen-Loève decomposition. Thus, from seemingly complex data from
which a matrix is composed, a low-dimensional subspace can be computed on which
the majority of the data resides.

The SVD of a matrix X ∈ ℂn×m takes the form

X = UΣV∗ , (7.4)

in terms of the following three matrices:

U ∈ ℂn×n is unitary, (7.5a)
V ∈ ℂm×m is unitary, (7.5b)
Σ ∈ ℝn×m is diagonal. (7.5c)

Additionally, it is assumed that the diagonal entries of Σ are nonnegative and ordered
from largest to smallest so that σ1 ≥ σ2 ≥ ⋅ ⋅ ⋅ ≥ σp ≥ 0, where p = min(m, n). The SVD of
thematrixX thus shows that thematrix first applies a unitary transformation preserv-
ing the unit sphere via V∗. This is followed by a stretching operation that creates an
ellipse with principal semi-axes given by the matrix Σ. Finally, the generated hyperel-
lipse is rotated by the unitary transformationU. Thus the image of a unit sphere under
any n × m matrix is a hyperellipse. The following is the primary theorem concerning
SVD [135].

Theorem. Every matrix X ∈ ℂn×m has an SVD (7.4). Furthermore, the singular values
{σj} are uniquely determined, and if X is square and σj is distinct, the singular vectors
{uj} and {vj} are uniquely determined up to complex signs (complex scalar factors of
absolute value 1).

The above theorem guarantees the existence of the SVD, but in practice, it still
remains to be computed. This is a fairly straightforward process if one considers the
following matrix products:

X∗X = (UΣV∗)∗(UΣV∗) = VΣ2V∗ (7.6)

and

XX∗ = (UΣV∗)(UΣV∗)∗ = UΣ2U∗ . (7.7)
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Multiplying (7.6) and (7.7) on the right by V and U, respectively, gives the two self-
consistent eigenvalue problems

X∗XV = VΣ2, (7.8a)
XX∗U = UΣ2 . (7.8b)

Thus if the normalized eigenvectors are found for these two equations, then the or-
thonormal basis vectors are produced for U and V. Likewise, the square root of the
eigenvalues of these equations produces the singular values σj.

Theorem (Schmidt–Eckart–Young–Mirsky theorem [118, 47, 96]). For any N so that
0 ≤ N ≤ p = min{m, n}, we can define the partial sum

XN =
N
∑
j=1

σjujv
∗
j . (7.9)

And if N = min{m, n}, we define σN+1 = 0. Then

‖X − XN‖2 = σN+1 . (7.10)

Likewise, if using the Frobenius norm, then

‖X − XN‖F = √σ2N+1 + σ
2
N+2 + ⋅ ⋅ ⋅ + σ2p . (7.11)

The interpretation of this theorem is critical as it gives a geometrical perspective
for understanding the SVD. Geometrically, the SVD gives the best approximation of a
hyperellipsoid by a line segment, i. e., simply take the line segment to be the longest
axis, i. e., that associated with the singular value σ1. Continuing this idea, what is the
best approximationbya two-dimensional ellipse? Take the longest and second longest
axes, i. e., those associated with the singular values σ1 and σ2. After r steps, the total
energy inX is completely captured. Thus theSVDgives analgorithm for a least-squares
fit allowing us to project thematrix onto low-dimensional representations in a formal,
algorithmic way.

The SVDprovides aprincipledway tofinda low-rank subspace onwhich to project
the evolution dynamics of the PDE in (7.1). Specifically, the first r modes of a low-rank
projection form the POD basis in (7.2) desired for model reduction

Ψ = Ur . (7.12)

These basismodes are used to project the dynamics onto the dominant, low-rank sub-
space of activity as shown in (7.3). Of course, to use these POD modes, the dynamics
of the governing PDEmust be known in advance. Moreover, the Galerkin projection of
the dynamics onto PODmodes in (7.3) may be, depending on the underlying problem,
unstable, requiring modification to stabilize the time-stepping scheme. Such stability
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issues have been considered extensively by Carlberg and co-workers [34], Amsallem
and Farhat [4], and Kalashnikova et al. [67]. Regardless, POD reductions arising from
the SVD computation of the basis Ψ form the underpinnings of many ROMs [60, 14].
A significant advantage of the maturity of POD-based reductions is the ability to pro-
duce rigorous error bounds. Indeed, there is a rich literature on how to use the error
properties of POD/SVD to derive rigorous error bounds for simulation as well as opti-
mal control across a diverse set of applications [75, 76, 143, 110, 59, 136]. Such rigorous
bounds provide trust regions and certifiable models for many critical application ar-
eas. Details of POD-based ROMs can be found in Chapter 2 of the current volume on
Model order reduction [13].

Due to tremendous advances and innovations, modern large-scale simulations
and/or the data collection process can quickly produce volumes of data that tradi-
tional methods could not easily analyze and diagnose in real-time. This emerging
big data era requires diagnostic tools that can scale to meet the rapidly growing in-
formation acquired from new monitoring technologies which are producing increas-
ingly fine-scale spatial and temporal measurements. In such cases, one can exploit
new techniques that are capable of extracting the dominant global features of the
high-dimensional dynamics. Specifically, emerging randomized linear algebra algo-
rithms [55, 85, 48] are critically enabling for scalable big data applications, supple-
menting themethod of snapshots [122] for efficient computation of the SVD. Random-
ized algorithms exploit the fact that the data themselves have low-rank features. In-
deed, themethod scaleswith the intrinsic rank of the dynamics rather than the dimen-
sion of themeasurements/sensor space. This is in contrast to standard SVD/PCA/POD
reductions which do not scale well with the data size. One can think of the scalable
methods as being critically enabling for producing real-time analysis of emerging,
streaming big data sets. Moreover, the dominant features of the data can be used for
an efficient compression of the data for storage or reduced-order modeling applica-
tions [3]. Figure 7.1 outlines the basic algorithmic architecture which can be used for
producing scalable SVD decompositions.

7.2.2 Dynamic mode decomposition

An alternative to POD is the DMD reduction [117]. Unlike POD, the DMD algorithm not
only correlates spatial activity, but also enforces that various low-rank spatial modes
be correlated in time, essentially merging the favorable aspects of POD/PCA in space
and the Fourier transform in time. DMD is a matrix factorization method based upon
the SVD algorithm. However, in addition to performing a low-rank SVD approxima-
tion, it further performs an eigendecomposition on a best-fit linear operator that ad-
vances measurements forward in time in the computed subspaces in order to extract
critical temporal features. Thus the DMD method provides a spatio-temporal decom-
position of data into a set of dynamic modes that are derived from snapshots or mea-
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Figure 7.1: Illustration of the randomized matrix decomposition technique for scalable decomposi-
tions. The random sampling matrixΩ is used to produce a new matrix Y which can be decomposed
using a QR decomposition. This leads to the construction of the matrix B which is used for approxi-
mating the left and right singular vector. From Erichson et al. [48].

surements of a given system in time, arranged as column state-vectors. Themathemat-
ics underlying the extraction of dynamic information from time-resolved snapshots
is closely related to the idea of the Arnoldi algorithm, one of the workhorses of fast
computational solvers. The DMD algorithm was originally designed to collect data at
regularly spaced intervals of time. However, new innovations allow for both sparse
spatial [27, 54] and temporal [139] collection of data as well as irregularly spaced col-
lection times [6].

Like SVD, the DMD algorithm is based upon a regression. Thus there are a vari-
ety of algorithms that have been proposed in the literature for computing the DMD. A
highly intuitive understandingof theDMDarchitecturewasproposedbyTuet al. [138],
which provides the exact DMDmethod.

Definition: Exact dynamic mode decomposition (Tu et al. 2014 [138]). Suppose we
have a dynamical system (7.1) and two sets of measurement data

X = [[
[

u1 u2 ⋅ ⋅ ⋅ um−1
]]

]

, (7.13a)

X󸀠 = [[
[

u󸀠1 u󸀠2 ⋅ ⋅ ⋅ u󸀠m−1
]]

]

(7.13b)
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so that u󸀠k = F(uk), where F is the map corresponding to the evolution of (7.1) for
time Δt. Exact DMD computes the leading eigendecomposition of the best-fit linear
operator A relating the data u󸀠 ≈ Au :

A = X󸀠X†. (7.14)

The DMDmodes, also called dynamicmodes, are the eigenvectors ofA, and eachDMD
mode corresponds to a particular eigenvalue of A.

The DMD framework takes an equation-free perspective where the original, non-
linear dynamics may be unknown. Thus measurements of the system alone are used
to approximate the dynamics and predict the future state. However, DMD can also be
used when governing equations are known [2]. This DMD-Galerkin procedure repre-
sents a potential hybrid between thePOD-Galerkin andDMDmethods. The integration
of DMD and POD can also be used for model reduction numerical schemes [146]. The
DMD procedure constructs a proxy, locally linear dynamical system approximation
to (7.1):

uk+1 ≈ Auk , (7.15)

whose well-known solution is

uk =
n
∑
j=1

ϕjλ
k
j bj = ΦΛkb , (7.16)

where ϕj and λj are the eigenvectors and eigenvalues of the matrix A, and the co-
efficients bj are the coordinates of the initial condition u0 in the eigenvector basis.
The eigenvalues λ of A determine the temporal dynamics of the system, at least in
an asymptotic sense and for normal operators, i. e., transient dynamics are not well
captured. It is often convenient to convert these eigenvalues to continuous time, ω =
log(λ)/Δt, so the real parts of the eigenvaluesω determine growth and decay of the so-
lution, and the imaginary parts determine oscillatory behaviors and their correspond-
ing frequencies. The eigenvalues and eigenvectors are critically enabling for produc-
ing interpretable diagnostic features of the dynamics. It is important to note that the
choice of the time step Δt is critical in the DMD algorithm. The time stepmust be small
enough to resolve the fastest time scales of relevance. A consequence of the linear
model produced by the DMD algorithm is its inability to model transient phenomena
over the snapshots sampled, aside from transient growthpotentially producedbynon-
normal modes where eigenvalues are identical or nearly so.

The DMD algorithm produces a low-rank eigendecomposition of the matrix A
that optimally fits the measured trajectory uk for k = 1, 2, . . . ,m snapshots in a least-
squares sense so that ‖uk+1 −Auk‖2 is minimized across all points for k = 1, 2, . . . ,m− 1.
The optimality of the approximation holds only over the sampling window where A
is constructed, and the approximate solution can be used to not only make future
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state predictions, but also to derive dynamic modes critical for diagnostics. Indeed,
in much of the literature where DMD is applied, it is primarily used as a diagnostic
tool. This is much like POD analysis, where the PODmodes are also primarily used for
diagnostic purposes. Thus the DMD algorithm can be thought of as a modification of
the SVD architecture which attempts to account for dynamic activity of the data. The
eigendecomposition of the low rank space found from SVD enforces a Fourier mode
time expansion which allows one to then make spatio-temporal correlations with the
sampled data. Recently, DMD has also been rigorously connected to the spectral POD
method [133].

Early variants of theDMD-computed eigenvalues thatwere biased by the presence
of sensor noise [58, 44]. Thiswas a direct result of the fact that the standard algorithms
treated the data in a pairwise sense and favored the forward direction in time. Dawson
et al. [44] and Hemati et al. [58] developed several methods for debiasing within the
standard DMD framework. These methods have the advantage that they can be com-
puted with essentially the same set of robust and fast tools as the standard DMD. As
an alternative, the optimized DMD advocated by [38] treats all of the snapshots of the
data at once. This avoidsmuchof the bias of the originalDMDbut requires the solution
of a potentially large nonlinear optimization problem. Askham and Kutz [6] recently
showed that the optimizedDMDalgorithm could be rendered numerically tractable by
leveraging the classical variable projectionmethod [53].Moreover, the optimizedDMD
method can be used to enforce all eigenvalues to have a real part less than or equal to
zero. This ensures stability of solutions for future times as there are no growingmodes.
For input-output systems, DMD has also been modified through a postprocessing al-
gorithm to generate a stable input-output model [15]. These methods show that DMD
architectures can be imbued with advantageous stability properties for ROMs.

The variable projection algorithm is based upon the observation that the desired
solutions of DMD are exponentials (7.16). Thus DMD is reformulated as an exponential
datafitting (specifically, for inversedifferential equations), anareaof research that has
been extensively developed and has many applications [52, 104]. The variable projec-
tionmethod leverages the special structure of the exponential data fitting problem, so
that many of the unknowns may be eliminated from the optimization. An additional
benefit of these tools is that the snapshots of data no longer need to be taken at regu-
lar intervals, i. e., the sample times do not need to be equispaced. The goal is then to
rewrite the data matrix of snapshots as

X⊺ ≈ Φ(α)B , (7.17)

whereΦ(α) ∈ ℂm×r with entries defined by Φ(α)i,j = exp(αjti).
The preceding leads us to the following definition of the optimized DMD in terms

of an exponential fitting problem. Suppose that α̂ and B̂ solve

minimize‖X⊺ −Φ(α)B‖F over α ∈ ℂk ,B ∈ ℂl×n . (7.18)
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The optimized DMD eigenvalues are then defined by λi = α̂i and the eigenmodes are
defined by

φi =
1

‖B̂⊺(:, i)‖2
B̂⊺(:, i) , (7.19)

where B̂⊺(:, i) is the i-th column of B̂⊺. Details of the algorithm and code for computing
the optimized DMD can be found in Askham and Kutz [6]. The improved and debiased
decomposition (7.16) of this optimal DMD strategy are readily apparent in numerous
examples. Moreover, a comparison of DMD variants shows how eachmethod handles
noise and takes on bias. Optimized DMD thus far outperforms all other variants at the
cost of a nonlinear optimization.

A remarkable feature of the DMD algorithm is its modularity for mathematical en-
hancements. Specifically, theDMDalgorithmcanbe engineered to exploit sparse sam-
pling [27, 54], it can be modified to handle inputs and actuation [106], it can be used
to more accurately approximate the Koopman operator when using judiciously cho-
sen functions of the state-space [80], and it can easily decompose data intomultiscale
temporal features in order to produce a multiresolution DMD [79]. Few mathematical
architectures are capable of seamlessly integrating such diverse modifications of the
dynamical system. But since the DMD provides an approximation of a linear system,
suchmodifications are easily constructed.Moreover, the DMDalgorithm, unlikemany
other machine learning algorithms, is not data-intensive in comparison to most deep
neural network architectures which require large labeled data sets. Thus a DMD ap-
proximation can always be achieved, especially as the first step in the algorithm is the
SVDwhich is guaranteed to exist for any datamatrix. However, for very large data sets,
DMD can leverage randomized methods [55, 85, 48] to produce a scalable randomized
DMD [49, 18].

DMD is closely related to the field of system identification, which identifies mod-
els from data, often for use with model-based controllers. Tu et al. [138] and Proctor
et al. [106] established connections between DMD and several classical system identi-
fication approaches, including the eigensystem realization algorithm [64] and singu-
lar spectrum analysis (SSA) [20] in climate time-series analysis. Nearly all methods of
system identification involve some form of regression of data onto dynamics, and the
main distinction between the various techniques is the degree towhich this regression
is constrained. For example, DMD generates best-fit linear models.

7.2.3 Koopman theory and observable selection

Much of the challenge associated with predicting, estimating, controlling, and reduc-
ing complex systems arises from the inherent nonlinearity in the governing equations.
Indeed, mathematical physics has a rich history in deriving coordinate transforma-
tions that simplify the dynamics and alleviate the challenge of nonlinearity. In 1931,
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Koopman developed an alternative perspective to classical dynamical systems theory,
showing that there is a linear, infinite-dimensional operator that acts on the Hilbert
space of possible measurement functions of the system, advancing these measure-
ments along the flow of the dynamics [71, 72]. Koopman’s operator-theoretic perspec-
tive trades nonlinear dynamics for linear but infinite-dimensional dynamics, and was
critical in Birkhoff’s proof of the ergodic theorem [17, 97].

Recently, Koopman operator theory has seen a resurgence of interest [93, 29, 94],
in largepart becauseof the increasingavailability ofmeasurementdata and improving
computational capabilities. In 2005, Mezic showed that Koopman theory may be used
to provide a modal decomposition of complex systems, providing direct relevance to
engineering systems [93]. Since then, it has been shown that the DMD algorithm from
fluid dynamics [117] actually approximates the Koopman operator [109], restricted to a
set of linear measurements of the system; a more detailed treatment for fluid systems
is given by Taira et al. [129].

The ability of Koopman analysis to transform nonlinear systems into a linear
framework has tremendous promise to make complex systems amenable to optimal
prediction, estimation, and controlwith simple techniques from linear systems theory.
In a short time, Koopman theory has been extended to nonlinear estimation [125, 126]
and control [106, 107], for example via model predictive control [73, 66], control in
eigenfunction coordinates [65], and switching control [103]. However, Koopman the-
ory appears to follow the principle of conservation of difficulty, in that finding the
right nonlinear measurements that enable a tractable linear representationmay be as
challenging as solving the original problem. In a sense, obtaining Koopman embed-
dings may be seen as an expensive offline computation that enables fast and efficient
online prediction, estimation, and control. In addition, the Koopman operator is
one of two main candidates for analyzing a dynamical system using operator-based
approaches, the other being the Perron–Frobenius operator. The Perron–Frobenius
operator evolves probability density functions along the flow of the dynamics, while
the Koopman operator evolves observable functions of the state. These two operators
are adjoint to each other in appropriately defined function spaces and it should there-
fore theoretically not matter which one is used to study the system’s behavior [70].

Before introducing themathematical formulationofKoopmanoperator theory,we
first consider the flowmap FΔt obtained by integrating the PDE in (7.1) for a short-time
Δt, given by

uk+1 = FΔt(uk). (7.20)

The Koopman operator 𝒦 is defined so that

𝒦tg = g ∘ Ft , (7.21)
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where ∘ is the composition operator. For a discrete-time system with time step Δt, this
becomes

𝒦Δtg(uk) = g(FΔt(uk)) = g(uk+1). (7.22)

In other words, the Koopman operator defines an infinite-dimensional linear dynam-
ical system that advances the observation of the state gk = g(uk) to the next time step:

g(uk+1) = 𝒦Δtg(uk). (7.23)

Note that this is true for any observable function g and for any state uk .
Much of the challenge of modern Koopman theory is obtaining a finite-dimen-

sional representation K of the infinite-dimensional operator 𝒦. In practice, this
amounts to discovering eigenfunctions of the Koopman operator, which are measure-
ment functions that behave linearly when evolved forward in time. A discrete-time
Koopman eigenfunction φ(u) corresponding to eigenvalue λ satisfies

φ(uk+1) = 𝒦Δtφ(uk) = λφ(uk). (7.24)

In continuous-time, a Koopman eigenfunction φ(u) satisfies

d
dt
φ(u) = 𝒦φ(u) = λφ(u). (7.25)

ObtainingKoopman eigenfunctions fromdata or fromanalytic expressions is a central
applied challenge in modern dynamical systems. Discovering these eigenfunctions
enables globally linear representations of strongly nonlinear systems. Applying the
chain rule to the time derivative of the Koopman eigenfunction φ(u) yields

d
dt
φ(u) = ∇φ(u) ⋅ u̇ = ∇φ(u) ⋅ f(u). (7.26)

Combined with (7.25), this results in a PDE for the eigenfunction φ(u):

∇φ(u) ⋅ f(u) = λφ(u). (7.27)

With this nonlinear PDE, it is possible to approximate the eigenfunctions, either by
solving for the Laurent series or with data via regression, both of which are explored
below. This formulation assumes that the dynamics are both continuous and differen-
tiable. The discrete-time dynamics in (7.20) aremore general, although inmany exam-
ples the continuous-time dynamics have a simpler representation than the discrete-
time map for long times. Koopman analysis has recently been extended to the con-
tinuous PDE formulation, rather than just the high-dimensional discretized ODE con-
text, for example, showing that the Cole–Hopf transform is a Koopman embedding for
Burgers’ equation [80].
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There are many approaches to obtain finite-dimensional approximations to the
Koopman operator. DMD is a representation based on linear observables [109], which
has been extended to nonlinear observables in the extended DMD (eDMD) [144] and
the variational approach of conformation dynamics [99, 100]. In all of these cases,
it is important that the measurements are chosen to form a Koopman-invariant sub-
space [23]; otherwise, the projection of the Koopman operator onto this subspace will
result in spurious eigenvalues and eigenfunctions.

In eDMD, an augmented state is constructed:

y = ΘT (u) =
[[[[[

[

θ1(u)
θ2(u)
...

θp(u)

]]]]]

]

. (7.28)

The projectionΘmay contain the original state u as well as nonlinear measurements,
so often p ≫ n. Next, two data matrices are constructed, as in DMD:

Y = [[
[

y1 y2 ⋅ ⋅ ⋅ ym
]]

]

, Y󸀠 = [[
[

y2 y3 ⋅ ⋅ ⋅ ym+1
]]

]

. (7.29a)

Finally, a best-fit linear operator AY is constructed that maps Y into Y󸀠:

AY = argminAY

󵄩󵄩󵄩󵄩Y
󸀠 − AYY

󵄩󵄩󵄩󵄩2 = Y
󸀠Y†. (7.30)

This regression may be written in terms of the data matrices Θ(X) and Θ(X󸀠):

AY = argminAY

󵄩󵄩󵄩󵄩Θ
T(X󸀠) − AYΘ

T (X)󵄩󵄩󵄩󵄩2 = Θ
T(X󸀠)(ΘT (X))†. (7.31)

The resulting nonlinearmodel for uk is given by the proxy eDMD variable yk+1 = AYyk .
Because the augmented vector y may be significantly larger than the state u, kernel
methods are often employed to compute this regression [145]. In principle, the en-
riched library Θ provides a larger basis in which to approximate the Koopman op-
erator. It has been shown recently that in the limit of infinite snapshots, the eDMD
operator converges to the Koopman operator projected onto the subspace spanned by
Θ [144, 70, 74]. However, if Θ does not span a Koopman-invariant subspace, then the
projected operator may not have any resemblance to the original Koopman operator,
as all of the eigenvalues and eigenvectors may be different. In fact, it was shown that
the eDMD operator will have spurious eigenvalues and eigenvectors unless it is repre-
sented in terms of a Koopman-invariant subspace [23]. Therefore, it is essential to use
validation and cross-validation techniques to ensure that eDMD models are not over-
fit, as discussed below. For example, it was shown that eDMD cannot contain the orig-
inal state u as a measurement and represent a system that has multiple fixed points,
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periodic orbits, or other attractors, because these systems cannot be topologically con-
jugate to a finite-dimensional linear system [23]. Recently, researchers havebeen lever-
aging the representational power of deep neural networks to identify Koopman eigen-
functions and approximate Koopman operators [130, 149, 92, 141, 101, 83]. In the next
section, we will discuss an alternative approach to obtain a Koopman-invariant sub-
space based on time delay coordinates [22].

7.2.4 Time-delay embeddings for Koopman embeddings

Instead of advancing instantaneous linear or nonlinear measurements of the state of
a system directly, as in DMD, it may be possible to obtain intrinsic measurement co-
ordinates for Koopman based on time-delayed measurements of the system [127, 22,
5, 43, 68]. This perspective is data-driven, relying on the wealth of information from
previous measurements to inform the future. Unlike a linear or weakly nonlinear sys-
tem, where trajectories may get trapped at fixed points or on periodic orbits, chaotic
dynamics are particularlywell suited to this analysis: Trajectories evolve to densely fill
an attractor, somore data providemore information. The use of delay coordinatesmay
be especially important for systems with long-term memory effects, where the Koop-
man approach has recently been shown to provide a successful analysis tool [128].
Interestingly, a connection between the Koopman operator and the Takens embed-
ding was explored as early as in 2004 [95], where a stochastic Koopman operator is
defined and a statistical Takens theorem is proven. One version of time-delay embed-
dings, the HAVOK, has been used successfully to diagnose a diverse set of dynamical
systems [22]. More broadly, there are a number of analysis tools that can be applied to
the Hankel matrix for analysis of dynamics [68].

The time-delaymeasurement scheme is shownschematically inFigure 7.2, as illus-
trated on the Lorenz system for a single time-series measurement of the first variable,
x(t). If the conditions of the Takens embedding theorem are satisfied [131], it is possi-
ble to obtain a diffeomorphism between a delay-embedded attractor and the attractor
in the original coordinates. We then obtain eigentime-delay coordinates from a time
series of a single measurement x(t) by taking the SVD of the Hankel matrix H:

H =
[[[[[

[

x(t1) x(t2) ⋅ ⋅ ⋅ x(tmc
)

x(t2) x(t3) ⋅ ⋅ ⋅ x(tmc+1)
...

...
. . .

...
x(tmo
) x(tmo+1) ⋅ ⋅ ⋅ x(tm)

]]]]]

]

= ΨTDΣV
∗, (7.32)

where mc is the number of snapshots and mo is the total number of delays. The
columns of ΨTD and V from the SVD are arranged hierarchically by their ability to
model the columns and rows of H, respectively. Often, H may admit a low-rank ap-
proximation by the first r columns ofΨTD andV. Note that theHankelmatrix in (7.32) is
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Figure 7.2: Schematic of the Hankel alternative view of Koopman (HAVOK) algorithm [22], as illus-
trated on the Lorenz 63 system. A time series x(t) is stacked into a Hankel matrix H. The SVD of H
yields a hierarchy of eigentime series that produce a delay-embedded attractor. A best-fit linear re-
gression model is obtained on the delay coordinates v; the linear fit for the first r − 1 variables is
excellent, but the last coordinate vr is not well modeled as linear. Instead, vr is an input that forces
the first r − 1 variables. Rare forcing events correspond to lobe switching in the chaotic dynamics.
From Brunton and Kutz [24], modified from [22].

the basis of the eigensystem realization algorithm [64] in linear system identification
and SSA [20] in climate time-series analysis.

The low-rank approximation to (7.32) provides a data-drivenmeasurement system
that is approximately invariant to the Koopman operator for states on the attractor.
By definition, the dynamics map the attractor into itself, making it invariant to the
flow. In other words, the columns of U form a Koopman-invariant subspace. We may
rewrite (7.32) with the Koopman operator 𝒦 ≜ 𝒦Δt:

H =
[[[[[

[

x(t1) 𝒦x(t1) ⋅ ⋅ ⋅ 𝒦mc−1x(t1)
𝒦x(t1) 𝒦2x(t1) ⋅ ⋅ ⋅ 𝒦mcx(t1)

...
...

. . .
...

𝒦mo−1x(t1) 𝒦mox(t1) ⋅ ⋅ ⋅ 𝒦m−1x(t1)

]]]]]

]

. (7.33)

The columns of (7.32) are well approximated by the first r columns of ΨTD. The first r
columns of V provide a time series of the magnitude of each of the columns of ΨTDΣ
in the data. By plotting the first three columns of V, we obtain an embedded attractor
for the Lorenz system (Figure 7.2).

The connection between eigentime-delay coordinates from (7.32) and the Koop-
man operator motivates a linear regression model on the variables in V. Even with
an approximately Koopman-invariant measurement system, there remain challenges
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to identifying a linear model for a chaotic system. A linear model, however detailed,
cannot capture multiple fixed points or the unpredictable behavior characteristic of
chaos with a positive Lyapunov exponent [23]. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the first r − 1 variables
and recast the last variable, vr, as a forcing term:

d
dt
v(t) = Av(t) + Bvr(t), (7.34)

wherev = [v1 v2 ⋅ ⋅ ⋅ vr−1]
T is a vector of the first r − 1 eigentime-delay coordinates.

Other work has investigated the splitting of dynamics into deterministic linear and
chaotic stochastic dynamics [93].

In all of the examples explored in [22], the linear model on the first r − 1 terms is
accurate, while no linear model represents vr . Instead, vr is an input forcing to the lin-
ear dynamics in (7.34), which approximates the nonlinear dynamics. The statistics of
vr(t) are non-Gaussian, with long tails corresponding to rare-event forcing that drives
lobe switching in the Lorenz system; this is related to rare-event forcing distributions
observed and modeled by others [86, 113, 87].

7.3 Data-driven model discovery

For many modern complex systems of interest, such as in materials science, neuro-
science, epidemiology, climate science, and finance, there is a basic lack of physi-
cal laws and governing equations. Even when governing equations are available, for
example in fluid turbulence, protein folding, and combustion, the equations are so
complex that they are not readily amenable to analysis. With increasingly complex
systems, and the emergence of powerful computing architectures and big data, the
paradigm is shifting to data-driven methods to discover governing equations [19, 119,
25, 111].

7.3.1 SINDy: sparse identification of nonlinear dynamics

Discovering ROMs from data is a central challenge in modern computational physics.
Typically, the form of a candidate model is either constrained via prior knowledge of
the governing equations, as in Galerkin projection [98, 9, 34], or a handful of heuris-
tic models are tested and parameters are optimized to fit data. Alternatively, best-fit
linear models may be obtained using DMD. Simultaneously identifying the nonlinear
structure and parameters of a model from data is considerably more challenging, as
there are combinatorially many possible model structures.
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The SINDy algorithm [25] bypasses the intractable combinatorial search through
all possible model structures, leveraging the fact that many dynamical systems

d
dt
a = f(a) (7.35)

have dynamics f with only a few active terms in the space of possible right-hand
side functions; for example, the Lorenz equations (Figure 7.3) only have a few linear
and quadratic interaction terms per equation. Here, a ∈ ℝr is a low-dimensional
state, for example obtained via POD/SVD [25, 81], or constructed from physically re-
alizable measurements, such as lift, drag, and the derivative of lift for aerodynamic
systems [82].

Figure 7.3: Schematic of the sparse identification of nonlinear dynamics (SINDy) algorithm [25], as
illustrated on the Lorenz 63 system. From Brunton and Kutz [24], modified from [25].

We then seek to approximate f by a generalized linearmodel in a set of candidate basis
functions θk(a)

f(a) ≈
p
∑
k=1

θk(a)ξk = Θ(a)Ξ, (7.36)

with the fewest nonzero terms in Ξ. It is possible to solve for the relevant terms that
are active in the dynamics using sparse regression [132, 155, 57, 63] that penalizes the
number of terms in the dynamics and scales well to large problems.

First, time-series data are collected from (7.35) and formed into a data matrix:

A = [a(t1) a(t2) ⋅ ⋅ ⋅ a(tm)]
T
. (7.37)

A similar matrix of derivatives is formed:

Ȧ = [ȧ(t1) ȧ(t2) ⋅ ⋅ ⋅ ȧ(tm)]
T
. (7.38)
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In practice, this may be computed directly from the data inA using a numerical differ-
encing scheme, for instance. However, for noisy data, the total-variation regularized
derivative tends to provide numerically robust derivatives [36]. Alternatively, it is pos-
sible to formulate the SINDy algorithm for discrete-time systems ak+1 = F(ak), as in
the DMD algorithm, and avoid derivatives entirely.

A library of candidate nonlinear functionsΘ(A)may be constructed from the data
in A:

Θ(A) = [1 A A2 ⋅ ⋅ ⋅ Ad ⋅ ⋅ ⋅ sin(A) ⋅ ⋅ ⋅] . (7.39)

Here, the matrix Ad denotes a matrix with column vectors given by all possible time
series of d-th-degree polynomials in the state a. In general, this library of candidate
functions is only limited by one’s imagination, but polynomials, trigonometric func-
tions, and other well-known functions are a good starting point. ThematrixΘ tends to
be ill-conditioned as the library elements, such as polynomials, are often not orthogo-
nal. Indeed, they can often be nearly aligned over the time course where the library is
evaluated. Despite the high condition number, the sparse selection advocated below
is able to identify the correct dynamics provided the noise level is sufficiently small.

The dynamical system in (7.35) may now be represented in terms of the data ma-
trices in (7.38) and (7.39) as

Ȧ = Θ(A)Ξ. (7.40)

Each column ξ k in Ξ is a vector of coefficients determining the active terms in the
k-th row in (7.35). A parsimonious model will provide an accurate model fit in (7.40)
with as few terms as possible in Ξ. Such a model may be identified using a convex
ℓ1-regularized sparse regression:

ξ k = argminξ 󸀠k ‖Ȧk − Θ(A)ξ
󸀠
k‖2 + λ‖ξ

󸀠
k‖1. (7.41)

Here, Ȧk is the k-th column of Ȧ and λ is a sparsity-promoting regularization weight,
typically chosen by simple hyperparameter tuning. Sparse regression, such as the
LASSO [132] or the sequential thresholded least-squares (STLS) algorithm used in
SINDy [25], improves the numerical robustness of this identification for noisy overde-
termined problems, in contrast to earlier methods [140] that used compressed sens-
ing [45, 30, 32, 31, 33, 10, 137]. We advocate STLS to select active terms; there are recent
guarantees on the convergence of this algorithm [152], and it has also been formalized
in a general sparse regression framework called SR3 [154].

The sparse vectors ξ k may be synthesized into a dynamical system:

ȧk = Θ(a)ξ k . (7.42)

Note that xk is the k-th element of a and Θ(a) is a row vector of symbolic functions of
a, as opposed to the data matrix Θ(A).
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The result of the SINDy regression is a parsimonious model that includes only
the most important terms required to explain the observed behavior. The sparse re-
gression procedure used to identify the most parsimonious nonlinear model is a con-
vex procedure. The alternative approach, which involves regression onto every possi-
ble sparse nonlinear structure, constitutes an intractable brute-force search through
the combinatorially many-candidate model forms. SINDy bypasses this combinato-
rial search with modern convex optimization and machine learning. It is interesting
to note that for discrete-time dynamics, ifΘ(A) consists only of linear terms, and if we
remove the sparsity promoting term by setting λ = 0, then this algorithm reduces to
DMD [117, 109, 138, 78]. If a least-squares regression is used, as in DMD, then even a
small amount of measurement error or numerical round-off will lead to every term in
the library being active in the dynamics, which is nonphysical. A major benefit of the
SINDy architecture is the ability to identify parsimoniousmodels that contain only the
required nonlinear terms, resulting in interpretable models that avoid overfitting.

7.3.1.1 Extensions and applications

Because SINDy is formulated in terms of linear regression in a nonlinear library, it
is highly extensible. The SINDy framework has been recently generalized by Loiseau
and Brunton [81] to incorporate known physical constraints and symmetries in the
equations by implementing a constrained sequentially thresholded least-squares op-
timization. In particular, energy-preserving constraints on the quadratic nonlineari-
ties in the Navier–Stokes equations were imposed to identify fluid systems [81], where
it is known that these constraints promote stability [86, 9, 34]. This work also showed
that polynomial libraries are particularly useful for building models of fluid flows in
terms of POD coefficients, yielding interpretable models that are related to classical
Galerkinprojection [25, 81]. Loiseau et al. [82] alsodemonstrated the ability of SINDy to
identify dynamical systems models of high-dimensional systems, such as fluid flows,
from a few physical sensor measurements, such as lift and dragmeasurements on the
cylinder. SINDy has also been applied to identify models in nonlinear optics [123] and
plasma physics [40]. For actuated systems, SINDy has been generalized to include in-
puts and control [26], and these models are highly effective for model predictive con-
trol [66]. It is also possible to extend the SINDy algorithm to identify dynamics with
rational function nonlinearities [88], with integral terms [116], and based on highly
corrupt and incomplete data [134]. SINDy was also recently extended to incorporate
information criteria for objectivemodel selection [89], and to identifymodelswith hid-
den variables using delay coordinates [22]. Finally, the SINDy framework was general-
ized to include partial derivatives, enabling the identification of PDEmodels [111, 115],
which will be explored below.

More generally, the use of sparsity-promoting methods in dynamics is quite
recent [140, 114, 102, 84, 28, 105, 8, 7, 21, 90, 91]. Other techniques for dynami-
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cal system discovery include methods to discover equations from time series [39],
equation-free modeling [69], empirical dynamic modeling [124, 148], modeling emer-
gent behavior [108], the nonlinear autoregressivemodel with exogenous inputs (NAR-
MAX) [51, 153, 16, 121], and automated inference of dynamics [120, 41, 42]. Broadly
speaking, these techniquesmay be classified as system identification, wheremethods
from statistics and machine learning are used to identify dynamical systems from
data. Nearly all methods of system identification involve some form of regression of
data onto dynamics, and the main distinction between the various techniques is the
degree to which this regression is constrained. For example, DMD generates best-fit
linear models. Recent nonlinear regression techniques have produced nonlinear dy-
namic models that preserve physical constraints, such as conservation of energy. Yao
and Bollt previously formulated the dynamical system identification problem as a
similar linear inverse problem [147], although sparsity-promoting regression was not
used, so the resulting models included all terms in Θ. In addition, SINDy is closely
related to NARMAX [16], which identifies the structure ofmodels from time-series data
through an orthogonal least-squares procedure.

7.3.2 Model discovery for PDEs

Amajor extension of the SINDymodeling framework generalized the library to include
partial derivatives, enabling the identification of PDEs [111, 115]. The resulting algo-
rithm, called the PDE functional identification of nonlinear dynamics (PDE-FIND),
shown in Figure 7.4, has been demonstrated to successfully identify several canoni-
cal PDEs from classical physics, purely from noisy data. These PDEs include Navier–
Stokes, Kuramoto–Sivashinsky, Schrödinger, reaction diffusion, Burgers, Korteweg–
de Vries (KdV), and the diffusion equation for Brownian motion [111].

PDE-FIND is similar to SINDy, in that it is based on sparse regression in a library
constructed frommeasurement data. PDE-FIND is outlined below for PDEs in a single
variable, although the theory is readily generalized to higher dimensional PDEs. The
spatial time-series data are arranged into a single column vector ϒ ∈ ℂmn, represent-
ing data collected overm time points and n spatial locations. Additional inputs, such
as a known potential for the Schrödinger equation, or themagnitude of complex data,
is arranged into a column vector Q ∈ ℂmn. Next, a library Θ(ϒ,Q) ∈ ℂmn×D of D can-
didate linear and nonlinear terms and partial derivatives for the PDE is constructed.
Derivatives are taken either using finite differences for clean data, or when noise is
added, with polynomial interpolation. The candidate linear and nonlinear terms and
partial derivatives are then combined into a matrix Θ(ϒ,Q) which takes the form

Θ(ϒ,Q)=[1 ϒ ϒ2 . . . Q . . . ϒx ϒϒx . . .] . (7.43)

Each column of Θ contains all of the values of a particular candidate function across
all of the mn space-time grid points on which data are collected. The time derivative
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Figure 7.4: Schematic of PDE-FIND [111], as illustrated on the fluid flow past a circular cylinder. From
Rudy et al. [111].

ϒt is also computed and reshaped into a column vector. As an example, a column of
Θ(ϒ,Q)may be qu2x.

The PDE evolution can be expressed in this library as follows:

ϒt = Θ(ϒ,Q)ξ . (7.44)

Each entry in ξ is a coefficient corresponding to a term in the PDE, and for canonical
PDEs, the vector ξ is sparse, meaning that only a few terms are active.

If the library Θ has a sufficiently rich column space that the dynamics are in its
span, then the PDE should be well represented by (7.44) with a sparse vector of coef-
ficients ξ . To identify the few active terms in the dynamics, a sparsity-promoting re-
gression is employed, as in SINDy. Importantly, the regression problem in (7.44) may
be poorly conditioned. Errors in computing the derivatives will be magnified by nu-
merical errors when inverting Θ. Thus a least-squares regression radically changes
the qualitative nature of the inferred dynamics.

In general, we seek the sparsest vector ξ that satisfies (7.44) with a small resid-
ual. Instead of an intractable combinatorial search through all possible sparse vec-
tor structures, a common technique is to relax the problem to a convex ℓ1-regularized
least-squares [132]; however, this tends to perform poorly with highly correlated data.
Instead, we use ridge regression with hard thresholding, which we call sequential
threshold ridge regression. For a given tolerance and threshold λ, this gives a sparse
approximation to ξ .

We iteratively refine the tolerance of Algorithm 1 to find the best predictor based
on the selection criteria,

̂ξ = argminξ
󵄩󵄩󵄩󵄩Θ(ϒ,Q)ξ − ϒt

󵄩󵄩󵄩󵄩
2
2 + ϵκ(Θ(ϒ,Q))‖ξ ‖0, (7.45)
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where κ(Θ) is the condition number of thematrixΘ, providing stronger regularization
for ill-posed problems. Penalizing ‖ξ ‖0 discourages overfitting by selecting from the
optimal position in a Pareto front. While in general this problem is NP-hard we are
restricting it to solutions generated via the STRidge algorithm, which promotes hard
thresholding. Such hard thresholding has been recently shown to be a proxy for the
ℓ0-norm [154].

As in the SINDy algorithm, it is important to provide sufficiently rich training data
to disambiguate between several different models. For example, if only a single trav-
eling wave from the KdV equation is analyzed, the method incorrectly identifies the
standard linear advection equation, as this is the simplest equation that describes a
single travelingwave. However, if two travelingwaves of different amplitudes are ana-
lyzed, the KdV equation is correctly identified, as it describes the different amplitude-
dependent wave speeds [111].

The PDE-FIND algorithm can also be used to identify PDEs based on Lagrangian
measurements that follow the path of individual particles. For example, it is possible
to identify the diffusion equation describing Brownianmotion of a particle based on a
single long time-seriesmeasurement of the particle position. In this example, the time
series is broken up into several short sequences, and the evolution of the distribution
of these positions is used to identify the diffusion equation [111].

7.4 Data-driven ROMs

The methods detailed in the previous sections can be integrated with traditional
model reduction architectures. In what follows, we highlight how such methods can
be used in a data-driven way to construct ROM models in a nonintrusive, efficient
manner.

7.4.1 Application of DMD and Koopman to ROMmodels

DMDprovides an alternative approach to computing the projection of the nonlinearity
onto the rank-r POD subspace in (7.3). Specifically, instead of using POD modes and
gappy sampling for approximation of the nonlinear, low-rank contribution to the dy-
namics, DMD is used to directly compute a time evolution of thenonlinearityΨTN(Ψa)
from snapshot data. Like the DEIM interpolation procedure [37], the DMD algorithm
will proceed by constructing a snapshot matrix of the nonlinearity:

XNL =
[[

[

N1 N2 ⋅ ⋅ ⋅ Nm
]]

]

, (7.46)
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where the columns Nk = N(u(tk),x, tk) ∈ ℂn are evaluations of the nonlinearity at
time tk .

Following (7.16), a DMD of the matrix XNL gives a low-rank approximation of the
form

N(u(t),x, t) = ΦNL exp(ΩNLt)bNL . (7.47)

This low-rank approximation is achieved directly with further recourse to gappy in-
terpolation for projecting back the DMD modes. The approximation can be used to
modify (7.3) so as to achieve the following low-rank model:

da
dt
= ΨTLΨa +ΨTΦNL exp(ΩNLt)bNL. (7.48)

This integration of POD and DMD methods has been shown to provide performance
increases in comparison to POD alone [2]. Moreover, the technique can be integrated
with randomized linear algebra decomposition methods to achieve further enhance-
ments in computational speed and scalability. Alla and Kutz further show that the
POD-DMD integration competes well with POD with DEIM in terms of accuracy, while
significantly outperforming it in terms of computation time. The DMD algorithm itself
is faster than POD with DEIM and POD-DMD, but suffers from poor accuracy. One can
also envision using aDMD-DMD reductionwhereby a projection-based reductionwith
DMD-Galerkin is performed along with a hyperreduction with DMD. DMD-based ROM
models have also recently been successfully demonstrated in a number of technical
applications [1, 56]. A more detailed analysis of interpolation methods can be found
in Chapter 7 of Volume 1 ofModel order reduction [12].

7.4.2 Application of SINDy for ROMs

The SINDy algorithm can also be used to construct ROM architectures (7.2) from data
alone, i. e., no governing equations are known a priori. As an example, the flow past
a cylinder (Figure 7.5) provides a model with a rich history in fluid mechanics and
dynamical systems [98]. It has long been theorized that turbulence is the result of a
series of Hopf bifurcations that occur as the flow velocity increases [112], giving rise
to more rich and intricate structures in the fluid. After 15 years, the first Hopf bifur-
cation was discovered in a fluid system, in the transition from a steady laminar wake
to laminar periodic vortex shedding at Reynolds number 47 [62, 151]. This discovery
led to a long-standing debate about how a Hopf bifurcation, with cubic nonlinearity,
can be exhibited in a Navier–Stokes fluid with quadratic nonlinearities. After 15 more
years, this was resolved using a separation of time scales and a mean-field model by
Noack et al. [98]. It was shown that coupling between oscillatory modes and the base
flow gives rise to a slowmanifold, resulting in algebraic terms that approximate cubic
nonlinearities on slow time scales.
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Figure 7.5: The vortex shedding past a cylinder is a prototypical example in fluid dynamics, with rele-
vance to many applications, including drag reduction behind vehicles. Vortex shedding is the result
of a Hopf bifurcation. However, because the Navier–Stokes equations have quadratic nonlinearity, it
is necessary to employ a mean-field model with a separation of time scales, where a fast mean-field
deformation is slave to the slow vortex shedding dynamics. The parabolic slow manifold is shown
(left), with the unstable fixed point (C), mean flow (B), and vortex shedding (A). A POD basis and
shift mode are used to reduce the dimension of the problem (middle right). The identified dynamics
closely match the true trajectory in POD coordinates, and they capture the quadratic nonlinearity
and time scales associated with the mean-field model. From Brunton, Proctor and Kutz [25].

This example provides a compelling test case for the proposed ROM-SINDy algorithm,
since the underlying form of the dynamics took nearly three decades for experts in
the community to uncover. Because the state dimension is large, it is advantageous
to reduce the dimension of the system. POD provides a low-rank basis resulting in a
hierarchy of orthonormal modes that, when truncated, capture themost energy of the
original system for the given rank truncation. The first twomost energetic PODmodes
capture a significant portion of the energy, and steady-state vortex shedding is a limit
cycle in these coordinates. An additional mode, called the shift mode, is included to
capture the transient dynamics connecting the unstable steady state with themean of
the limit cycle [98].

In the dominant POD coordinate system (rank r = 3), the mean-field model ȧ =
f(a) for the cylinder dynamics is discovered by SINDy to be [25]:

ȧ1 = μa1 − ωa2 + Aa1a3, (7.49a)
ȧ2 = ωa1 + μa2 + Aa2a3, (7.49b)
ȧ3 = −λ(a3 − a

2
1 − a

2
2). (7.49c)

Note that the governing equations for a(t) in (7.49) are closely related to the slow-
manifold formulation of Noack et al. [98] formulated using the standardGalerkin-POD
projection. Specifically, it discovers the correct model ȧ = f(a) with quadratic non-
linearities and reproduces a parabolic slow manifold. The a3 variable corresponds to
the shift-mode of Noack et al. [98], and if λ is large, so that the a3-dynamics are fast,
then the mean flow rapidly corrects to be on the slow manifold a3 = a21 + a

2
2 given
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by the amplitude of vortex shedding. When substituting this algebraic relationship
into equations (7.49a) and (7.49b), we recover the Hopf normal form on the slowmani-
fold. Note that derivative measurements are not available, but are computed from the
state variables. When the training data do not include trajectories that originate from
the slow manifold, the algorithm incorrectly identifies cubic nonlinearities, and fails
to identify the slowmanifold. This model was subsequently improved by Loiseau and
Brunton [81] to incorporate energy-conserving constraints and to include higher-order
terms to model the effect of truncated POD modes.

7.4.3 Application of time-delay embeddings for ROMs

Time-delay embedding for building ROMs can be used in a completely data-driven ar-
chitecture where the governing equations are unknown, or for building a Koopman
operator for a known governing evolution equation [22]. Indeed, one can use time-
delay embedding with the SINDy architecture when short time-delay embeddings are
used, or for producing a direct Koopman approximationwhen long time-delay embed-
dings are used. Champion et al. [35] highlight the various architectures possible. The
short-time and long-time embedding possibilities are detailed here.

7.4.3.1 Short time-delay embedding

For a short time-delay embedding, the time-shifted data can provide a more accurate
assessment of the true rank of the underlying system. Such time-delay embeddingwas
used by Tu et al. [138] in order to ensure that the data were not rank-deficient. Indeed,
without time-shifting the data, the DMD approximation does not capture the correct
complex eigenvalue pairs associated with the periodic (Fourier) time dynamics.

Figure 7.6 shows the effects of the time-delay embedding as illustrated on the sim-
ple Van der Pol oscillator. In the top left panel of this figure, the singular values of H
given by (7.32) for a short time-delay embedding is shown. Specifically, the data were
delayed by five time steps. For this delay, the rank of the matrix H is dominated by
twomodes. The time dynamics of the first three modes are shown in the middle panel
of the figure, illustrating the strongly nonlinear Van der Pol oscillations. A reduced
model can then be constructed from the first two modes so that ΨTD spans a rank-
2 subspace. Importantly, the dominant nonlinear time-series data can then be used
with the SINDy architecture to discover the governing equations and build a dynami-
cal ROMmodel.
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Figure 7.6: Time-delay embedding of the Van der Pol oscillator with time steps of 0.01. (a) With a
short time-delay embedding of five time steps, the SVD produces a dominant low-rank (two-mode)
truncation whose time-dynamic modes are illustrated in (c). (b) With a long time-delay embedding
of several hundred time steps, the SVD produces a low-rank truncation of approximately a dozen
modes whose time dynamic modes are illustrated in (d). Note that the short time-delay modes are
strongly nonlinear oscillatory modes while the long time delay produces nearly perfect sinusoidal
modes. Details can be found in Champion, Brunton, and Kutz [35].

7.4.3.2 Long time-delay embedding

For long time-delay embeddings, the nonlinear dynamics can be made to be approxi-
mately linear, thus providing an approximation to the Koopman operator and a linear
ROM. The long time-delay embedding is especially useful in a data-driven architec-
ture where the governing equations are unknown. Moreover, the time-delay embed-
ding can significantly improve upon theDMDalgorithm for producing an approximate
dynamical system for forecasting.

Figure 7.6 shows the effects of the time-delay embedding as illustrated on the sim-
ple Van der Pol oscillator. In the top right panel of this figure, the singular values
of H for a long-time delay embedding are shown. Specifically, the data were delayed
by several hundred time steps which spanned more than a period of the nonlinear
oscillations. Unlike the short time-delay embedding, the rank increases from two to
about a dozen. The time dynamics of the first three of these dozenmodes (i. e., the first
three columns of the Vmatrix of (7.32)) are shown in the bottom panel. Note that the
time modes with the long delay are now approximately sinusoidal, thus being ideal
for a DMD/Koopman approximation. In this case, the SINDy architecture is unneces-
sary.
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7.5 Conclusion and outlook
ROMs continue to play a critically enabling role in emulation and simulation strate-
gies. Indeed, ROMs aremakingmany intractable computations tractable by providing
a surrogate model that can be computed at a fraction of the cost and with improved
memory constraints. For emergingmodels inmultiscale dynamical systems, suchas in
biology, atmospheric dynamics, and molecular dynamics simulations, ROMs provide
a scalable mathematical framework, where it is possible to obtain accurate statistical
estimates of the properties of the high-fidelity model from low-fidelity models.

Data-driven approaches to ROMs are also playing an increasingly important role
in developing scalable and nonintrusive emulators. Thus the governing equations,
which may be unknown or only partially known, can be approximated by a suite
of emerging mathematical methods. Table 7.1 highlights the various methods that
are available for producing data-driven ROMs. They are compared to the standard
Galerkin-POD architecture. Importantly, for each ROM architecture, two things must
be prescribed in the underlying separation of variable strategy (7.2): (i) the subspace
onwhich theROM is to be constructed, and (ii) themanner of extracting the dynamical
evolution in this subspace. Of course, such reductions do not guarantee the construc-
tion of a stable ROM model, as recently highlighted by Carlberg et al. [34]. Thus for
each ROM model strategy, care must be taken in order to produce a stable, low-rank
emulator. Indeed, both POD-Galerkin and POD-DMD algorithms, for instance, must
be modified in order to promote a stable time-stepping ROM.

If the governing evolution equations (7.1) are known, then a Galerkin-POD (or
Petrov–Galerkin-POD) provides a simple projectivemethod for producing a ROM. One
can also use the DMD algorithm in this architecture (POD-DMD) for more rapid eval-
uation of the nonlinear terms. For unknown governing equations where the full state

Table 7.1:Model reduction algorithms and their subspaces. Included is one example reference high-
lighting the method.

Data-driven ROM algorithms

ROMmodel u(x, t) = Ψ(x)a(t)
Galerkin-POD [14] ȧ = ΨT LΨa +ΨTN(Ψa)
DMD [78] u = Φ exp(Ωt)b
POD-DMD [2] ȧ = ΨT LΨa +ΨTΦNL exp(ΩNLt)bNL
POD-SINDy [25] ȧ = f(a) dynamics on subspaceΨ
HAVOK-SINDy [35] ȧ = f(a) dynamics on subspaceΨTD (short delay)
HAVOK-Koopman [22] ȧ = Ka dynamics on subspaceΨTD (long delay)
Basis elements (rank r)
POD modes X = [u1 u2 . . . um] = ΨΣV∗

DMD modes X = [u1 u2 . . . um] = Φ exp(Ωt)b
nonlinear DMD modes N = [N1 N2 . . . Nm] = ΦNL exp(ΩNLt)bNL
Time-delay Koopman modes H = ΨTDΣV∗
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space is sampled, DMD can be used to produce a low-rank, best-fit linear model for
the dynamics. An alternative to DMD is the POD-SINDy algorithm, which discovers
a low-rank, nonlinear dynamical system approximating the dynamics of the system.
Time-delay embeddings allow for some flexibility in building a ROM depending upon
the scenario. Time-delay embeddings also allow one to handle latent variables when
the full state measurements are unknown or unavailable. For a long time-delay em-
bedding with known or unknown governing equations, one can augment the DMD al-
gorithmby producing a time-delay coordinate systemwhich helpsmake the dynamics
linearly dominant (HAVOK-Koopman). A short time delay can be used to determine
the rank of the underlying dynamics and potentially build a SINDy model (HAVOK-
SINDy). Alternatively, a long time-delay embedding can discover the intrinsic rank
and linearize the dynamics in the time-delay coordinates. For more details on DMD,
its variants, and its broad applications, please see [78]. For a broader overview of data-
driven methods and machine learning applied to dynamics, please see [24].

The diversity of strategies is important in modern complex systems simulations
where often the equations are only partially known, but where rich measurement
data may be available. Thus data-driven strategies can bridge the gap between mea-
surement space and model space. Table 7.1 gives a summary of the various current
techniques. It is envisioned that refinement and innovations using the various strate-
gies will greatly aid in modeling the challenge problems in many fields where high-
dimensional, multiscale physics are prevalent. Figure 7.7 gives a summary of the
decision space necessary when considering an appropriate ROM. One can either em-

Figure 7.7: Low-order modeling of fluid flows begins with an appropriate coordinate system that
captures the few dominant flow mechanisms that are dynamically relevant. It is most common to
embed high-dimensional fluid data in a linear subspace, for example using POD (a). However, for
the flow past a cylinder, it is clear that the data live on a low-dimensional manifold in the embedding
space (b). Both approaches have been explored extensively, for example by Noack et al. [98] and
Loiseau et al. [82]. After an appropriate coordinate system is obtained, there are several choices for
model construction.
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bed in a linear space or in a nonlinear space (manifold), and then determine the
appropriate nonlinear dynamics. This can be done in a variety of ways depending on
wether the underlying governing equations are known, or if only measurement data
are available.
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